1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
||| Basic definition and notation for setoids
module Data.Setoid.Definition
import public Control.Relation
import public Control.Order
import Data.Vect
import public Data.Fun.Nary
infix 5 ~>, ~~>, <~>
%default total
public export
record Equivalence (A : Type) where
constructor MkEquivalence
0 relation: Rel A
reflexive : (x : A) -> relation x x
symmetric : (x, y : A) -> relation x y -> relation y x
transitive: (x, y, z : A) -> relation x y -> relation y z
-> relation x z
public export
EqualEquivalence : (0 a : Type) -> Equivalence a
EqualEquivalence a = MkEquivalence
{ relation = (===)
, reflexive = \_ => Refl
, symmetric = \_,_, Refl => Refl
, transitive = \_,_,_,Refl,Refl => Refl
}
public export
record Setoid where
constructor MkSetoid
0 U : Type
equivalence : Equivalence U
public export
record PreorderData A (rel : Rel A) where
constructor MkPreorderData
reflexive : (x : A) -> rel x x
transitive : (x,y,z : A) -> rel x y -> rel y z -> rel x z
public export
[PreorderWorkaround] (Reflexive ty rel, Transitive ty rel) => Preorder ty rel where
public export
MkPreorderWorkaround : {preorderData : PreorderData ty rel} -> Order.Preorder ty rel
MkPreorderWorkaround {preorderData} =
let reflexiveArg = MkReflexive {ty, rel} $
lam Hidden (\y => rel y y) preorderData.reflexive
transitiveArg = MkTransitive {ty} {rel} $
Nary.curry 3 Hidden
(\[x,y,z] =>
x `rel` y ->
y `rel` z ->
x `rel` z)
(\[x,y,z] => preorderData.transitive _ _ _)
in PreorderWorkaround
public export
reflect : (a : Setoid) -> {x, y : U a} -> x = y -> a.equivalence.relation x y
reflect a Refl = a.equivalence.reflexive _
public export
MkPreorder : {0 a : Type} -> {0 rel : Rel a}
-> (reflexive : (x : a) -> rel x x)
-> (transitive : (x,y,z : a) -> rel x y -> rel y z -> rel x z)
-> Preorder a rel
MkPreorder reflexive transitive = MkPreorderWorkaround {preorderData = MkPreorderData reflexive transitive}
public export
cast : (a : Setoid) -> Preorder (U a) (a.equivalence.relation)
cast a = MkPreorder a.equivalence.reflexive a.equivalence.transitive
namespace ToSetoid
public export
irrelevantCast : (0 a : Type) -> Setoid
irrelevantCast a = MkSetoid a (EqualEquivalence a)
public export
Cast Type Setoid where
cast a = irrelevantCast a
public export 0
SetoidHomomorphism : (a,b : Setoid)
-> (f : U a -> U b) -> Type
SetoidHomomorphism a b f
= (x,y : U a) -> a.equivalence.relation x y
-> b.equivalence.relation (f x) (f y)
public export
record (~>) (A,B : Setoid) where
constructor MkSetoidHomomorphism
H : U A -> U B
homomorphic : SetoidHomomorphism A B H
public export
mate : {b : Setoid} -> (a -> U b) -> (irrelevantCast a ~> b)
mate f = MkSetoidHomomorphism f $ \x,y, prf => reflect b (cong f prf)
||| Identity Setoid homomorphism
public export
id : (a : Setoid) -> a ~> a
id a = MkSetoidHomomorphism Prelude.id $ \x, y, prf => prf
||| Composition of Setoid homomorphisms
public export
(.) : {a,b,c : Setoid} -> b ~> c -> a ~> b -> a ~> c
g . f = MkSetoidHomomorphism (H g . H f) $ \x,y,prf => g.homomorphic _ _ (f.homomorphic _ _ prf)
public export
(~~>) : (a,b : Setoid) -> Setoid
(~~>) a b = MkSetoid (a ~> b) $
let 0 relation : (f, g : a ~> b) -> Type
relation f g = (x : U a) ->
b.equivalence.relation (f.H x) (g.H x)
in MkEquivalence
{ relation
, reflexive = \f,v =>
b.equivalence.reflexive (f.H v)
, symmetric = \f,g,prf,w =>
b.equivalence.symmetric _ _ (prf w)
, transitive = \f,g,h,f_eq_g, g_eq_h, q =>
b.equivalence.transitive _ _ _
(f_eq_g q) (g_eq_h q)
}
public export
post : {a,b,c : Setoid} -> b ~> c -> (a ~~> b) ~> (a ~~> c)
post h = MkSetoidHomomorphism
{ H = (h .)
, homomorphic = \f1,f2,prf,x => h.homomorphic _ _ (prf x)
}
||| Two setoid homomorphism are each other's inverses
public export
record Isomorphism {a, b : Setoid} (Fwd : a ~> b) (Bwd : b ~> a) where
constructor IsIsomorphism
BwdFwdId : (a ~~> a).equivalence.relation (Bwd . Fwd) (id a)
FwdBwdId : (b ~~> b).equivalence.relation (Fwd . Bwd) (id b)
||| Setoid isomorphism
public export
record (<~>) (a, b : Setoid) where
constructor MkIsomorphism
Fwd : a ~> b
Bwd : b ~> a
Iso : Isomorphism Fwd Bwd
||| Identity (isomorphism _)
public export
refl : {a : Setoid} -> a <~> a
refl = MkIsomorphism (id a) (id a) (IsIsomorphism a.equivalence.reflexive a.equivalence.reflexive)
||| Reverse an isomorphism
public export
sym : a <~> b -> b <~> a
sym iso = MkIsomorphism iso.Bwd iso.Fwd (IsIsomorphism iso.Iso.FwdBwdId iso.Iso.BwdFwdId)
||| Compose isomorphisms
public export
trans : {a,b,c : Setoid} -> (a <~> b) -> (b <~> c) -> (a <~> c)
trans ab bc = MkIsomorphism (bc.Fwd . ab.Fwd) (ab.Bwd . bc.Bwd) (IsIsomorphism i1 i2)
where i1 : (x : U a) -> a.equivalence.relation (ab.Bwd.H (bc.Bwd.H (bc.Fwd.H (ab.Fwd.H x)))) x
i1 x = a.equivalence.transitive _ _ _ (ab.Bwd.homomorphic _ _ (bc.Iso.BwdFwdId _)) (ab.Iso.BwdFwdId x)
i2 : (x : U c) -> c.equivalence.relation (bc.Fwd.H (ab.Fwd.H (ab.Bwd.H (bc.Bwd.H x)))) x
i2 x = c.equivalence.transitive _ _ _ (bc.Fwd.homomorphic _ _ (ab.Iso.FwdBwdId _)) (bc.Iso.FwdBwdId x)
public export
IsoEquivalence : Equivalence Setoid
IsoEquivalence = MkEquivalence (<~>) (\_ => refl) (\_,_ => sym) (\_,_,_ => trans)
||| Quotient a type by an function into a setoid
|||
||| Instance of the more general coequaliser of two setoid morphisms.
public export
Quotient : (b : Setoid) -> (a -> U b) -> Setoid
Quotient b q = MkSetoid a $
let 0 relation : a -> a -> Type
relation x y = b.equivalence.relation (q x) (q y)
in MkEquivalence
{ relation = relation
, reflexive = \x =>
b.equivalence.reflexive (q x)
, symmetric = \x,y =>
b.equivalence.symmetric (q x) (q y)
, transitive = \x,y,z =>
b.equivalence.transitive (q x) (q y) (q z)
}
|