diff options
Diffstat (limited to 'src/SOAS.idr')
-rw-r--r-- | src/SOAS.idr | 529 |
1 files changed, 90 insertions, 439 deletions
diff --git a/src/SOAS.idr b/src/SOAS.idr index eee2416..892f039 100644 --- a/src/SOAS.idr +++ b/src/SOAS.idr @@ -1,443 +1,94 @@ module SOAS -import Data.List.Quantifiers -import Data.Singleton -import Data.DPair -import Syntax.WithProof - -prefix 4 %% -infixr 3 -|> , -||> , ~> , ~:> , -<>, ^ -infixl 3 <<< -infixr 4 :- - -record (.extension) (types : Type) where - constructor (:-) - 0 name : String - ofType : types - -data (.Ctx) : (type : Type) -> Type where - Lin : type.Ctx - (:<) : (ctx : type.Ctx) -> (namety : type.extension) -> type.Ctx - -(.Family), (.SortedFamily) : Type -> Type -type.Family = type.Ctx -> Type -type.SortedFamily = type -> type.Family - -data (.varPos) : type.Ctx -> (0 x : String) -> type -> Type - where [search x] - Here : (ctx :< (x :- ty)).varPos x ty - There : ctx.varPos x ty -> (ctx :< sy).varPos x ty - -data (.var) : type.Ctx -> type -> Type where - (%%) : (0 name : String) -> {auto pos : ctx.varPos name ty} -> ctx.var ty - -0 -(.name) : ctx.var ty -> String -(%% name).name = name - -(.pos) : (v : ctx.var ty) -> ctx.varPos v.name ty -((%% name) {pos}).pos = pos - -(.toVar) : (v : ctx.varPos x ty) -> ctx.var ty -pos.toVar {x} = (%% x) {pos} - -ThereVar : (v : ctx.var ty) -> (ctx :< ex).var ty -ThereVar v = (%% v.name) {pos = There v.pos} - -Var : type.SortedFamily -Var = flip (.var) - -0 -(-||>) : {type : Type} -> (src,tgt : type.Family) -> Type -(src -||> tgt) = {0 ctx : type.Ctx} -> src ctx -> tgt ctx - -0 -(-|>) : {type : Type} -> (src,tgt : type.SortedFamily) -> Type -(src -|> tgt) = {ty : type} -> src ty -||> tgt ty - -(++) : (ctx1,ctx2 : type.Ctx) -> type.Ctx -ctx1 ++ [<] = ctx1 -ctx1 ++ (ctx2 :< ty) = (ctx1 ++ ctx2) :< ty - -(<<<) : type.SortedFamily -> type.Ctx -> type.SortedFamily -(f <<< ctx0) ty ctx = f ty (ctx ++ ctx0) - -(.subst) : {type : Type} -> type.SortedFamily -> type.Ctx -> type.Ctx -> Type -f.subst ctx1 ctx2 = {ty : type} -> ctx1.var ty -> f ty ctx2 - -0 (.substNamed) : {type : Type} -> type.SortedFamily -> type.Ctx -> type.Ctx -> Type -f.substNamed ctx1 ctx2 = {0 x : String} -> {ty : type} -> ctx1.varPos x ty -> f ty ctx2 - -(~>) : {type : Type} -> (src, tgt : type.Ctx) -> Type -(~>) = (Var).subst - -0 (~:>) : {type : Type} -> (src, tgt : type.Ctx) -> Type -(~:>) = (Var).substNamed - -weakl : (ctx1, ctx2 : type.Ctx) -> ctx1 ~> (ctx1 ++ ctx2) -weakl ctx1 [<] x = x -weakl ctx1 (ctx2 :< z) x = ThereVar (weakl ctx1 ctx2 x) - -weakrNamed : (ctx1, ctx2 : type.Ctx) -> ctx2 ~:> (ctx1 ++ ctx2) -weakrNamed ctx1 (ctx :< (x :- ty)) Here = (%% x) {pos = Here} -weakrNamed ctx1 (ctx :< sy) (There pos) = - ThereVar $ weakrNamed ctx1 ctx pos - -weakr : (ctx1, ctx2 : type.Ctx) -> ctx2 ~> (ctx1 ++ ctx2) -weakr ctx1 ctx2 ((%% name) {pos}) = weakrNamed ctx1 ctx2 pos - -(.copairPos) : (0 x : type.SortedFamily) -> {ctx2 : type.Ctx} -> - x.subst ctx1 ctx -> x.subst ctx2 ctx -> x.substNamed (ctx1 ++ ctx2) ctx -x.copairPos {ctx2 = [<]} g1 g2 pos = g1 $ pos.toVar -x.copairPos {ctx2 = (ctx :< (name :- ty))} g1 g2 Here = g2 (Here .toVar) -x.copairPos {ctx2 = (ctx2 :< namety)} g1 g2 (There pos) = - x.copairPos g1 (g2 . ThereVar) pos - -(.copair) : (0 x : type.SortedFamily) -> {ctx2 : type.Ctx} -> - x.subst ctx1 ctx -> x.subst ctx2 ctx -> x.subst (ctx1 ++ ctx2) ctx -x.copair g1 g2 v = x.copairPos g1 g2 v.pos - -extend : (0 x : type.SortedFamily) -> {0 ctx1 : type.Ctx} -> {ty : type} -> - x ty ctx2 -> x.subst ctx1 ctx2 -> x.subst (ctx1 :< (n :- ty)) ctx2 -extend x {ctx2, ty} u theta = - x.copair {ctx2 = [< n :- ty]} theta workaround -- (\case {Here => x}) - where - workaround : x.subst [< (n :- ty)] ctx2 - workaround ((%% _) {pos = Here}) = u - workaround ((%% _) {pos = There _}) impossible - -0 -(-<>) : (src, tgt : type.SortedFamily) -> type.SortedFamily -(src -<> tgt) ty ctx = {0 ctx' : type.Ctx} -> src ty ctx' -> - tgt ty (ctx ++ ctx') - --- TODO: (Setoid) coalgebras - -0 -(^) : (tgt, src : type.SortedFamily) -> type.SortedFamily -(tgt ^ src) ty ctx = - {0 ctx' : type.Ctx} -> src.subst ctx ctx' -> tgt ty ctx' - -0 -Nil : type.SortedFamily -> type.SortedFamily -Nil f = f ^ Var - -hideCtx : {0 a : type.Ctx -> Type} -> - ((0 ctx : type.Ctx) -> a ctx) -> {ctx : type.Ctx} -> a ctx -hideCtx f {ctx} = f ctx - -0 -(*) : (derivative, tangent : type.SortedFamily) -> type.SortedFamily -(derivative * tangent) ty ctx = - (ctx' : type.Ctx ** (derivative ty ctx' , tangent.subst ctx' ctx)) - -record MonStruct (m : type.SortedFamily) where - constructor MkSubstMonoidStruct - var : Var -|> m - mult : m -|> (m ^ m) - -(.sub) : {m : type.SortedFamily} -> {ty,sy : type} -> {0 ctx : type.Ctx} -> - (mon : MonStruct m) => m sy (ctx :< (n :- ty)) -> m ty ctx -> m sy ctx -t.sub s = mon.mult t (extend m s mon.var) - -(.sub2) : {m : type.SortedFamily} -> {ty1,ty2,sy : type} -> - {0 ctx : type.Ctx} -> - (mon : MonStruct m) => m sy (ctx :< (x :- ty1) :< (x :- ty2)) -> - m ty1 ctx -> m ty2 ctx -> m sy ctx -t.sub2 s1 s2 = mon.mult t (extend m s2 (extend m s1 mon.var)) - -record (.PointedCoalgStruct) type (x : type.SortedFamily) where - constructor MkPointedCoalgStruct - ren : x -|> [] x - var : Var -|> x - -%hint -(.VarPointedCoalgStruct) : (0 type : Type) -> type.PointedCoalgStruct Var -type.VarPointedCoalgStruct = MkPointedCoalgStruct - { ren = \i, f => f i - , var = id - } - -liftPos : (ctx : type.Ctx) -> (mon : type.PointedCoalgStruct p) => - {ctx2 : type.Ctx} -> - (p.subst ctx1 ctx2) -> p.substNamed (ctx1 ++ ctx) (ctx2 ++ ctx) -liftPos [<] f x = f x.toVar -liftPos (ctx :< (_ :- _)) f Here = mon.var (Here .toVar) -liftPos (ctx :< namety) f (There pos) = mon.ren (liftPos ctx f pos) - ThereVar - - -lift : (ctx : type.Ctx) -> (mon : type.PointedCoalgStruct p) => - {ctx2 : type.Ctx} -> - (p.subst ctx1 ctx2) -> p.subst (ctx1 ++ ctx) (ctx2 ++ ctx) -lift ctx f v = liftPos ctx f v.pos - -0 -(.SortedFunctor) : (type : Type) -> Type -type.SortedFunctor = type.SortedFamily -> type.SortedFamily - -record Strength (f : type.SortedFunctor) where - constructor MkStrength - strength : - (0 p,x : type.SortedFamily) -> - (mon : type.PointedCoalgStruct p) -> - (f (x ^ p)) -|> ((f x) ^ p) - -(.str) : - Strength f -> - {0 p,x : type.SortedFamily} -> - (mon : type.PointedCoalgStruct p) => - (f (x ^ p)) -|> ((f x) ^ p) -strength.str {p,x,mon} = strength.strength p x mon - -record (.Map) (signature : type.SortedFunctor) where - constructor MkMap - map : - {0 a,b : type.SortedFamily} -> (a -|> b) -> - signature a -|> signature b - -record (.MonoidStruct) - (signature : type.SortedFunctor) - (x : type.SortedFamily) where - constructor MkSignatureMonoid - mon : MonStruct x - alg : signature x -|> x - -record (.MetaAlg) - (signature : type.SortedFunctor) - (meta : type.SortedFamily) - (a : type.SortedFamily) where - constructor MkMetaAlg - alg : signature a -|> a - var : Var -|> a - mvar : meta -|> (a ^ a) - - -traverse : {0 p,a : type.SortedFamily} -> - {0 signature : type.SortedFunctor} -> - (functoriality : signature.Map) => - (str : Strength signature) => - (coalg : type.PointedCoalgStruct p) => - (alg : signature a -|> a) -> - (phi : p -|> a) -> - (chi : meta -|> (a ^ a)) -> signature.MetaAlg meta (a ^ p) -traverse {p,a} alg phi chi = MkMetaAlg - { alg = \h,s => alg $ str.str h s - , var = \v,s => phi (s v) - , mvar = \m,e,s => chi m (\v => e v s) - } - --- Does this follow from everything else? -mapSubstPos : {0 a,b : type.SortedFamily} -> (a -|> b) -> {0 ctx : type.Ctx} -> - {0 ctx' : type.Ctx} -> - a.subst ctx ctx' -> b.substNamed ctx ctx' -mapSubstPos f {ctx = (ctx :< (x :- ty))} theta Here - = f $ theta {ty} $ (%% _) {pos = Here} -mapSubstPos f {ctx = (ctx :< sy)} theta (There pos) - = mapSubstPos {a,b} f (theta . ThereVar) pos - -mapSubst : {0 a,b : type.SortedFamily} -> (a -|> b) -> {0 ctx : type.Ctx} -> - (a.subst ctx -||> b.subst ctx) -mapSubst f {ctx = ctx0} theta v = mapSubstPos {a,b} f theta v.pos - -(.MetaCtx) : Type -> Type -type.MetaCtx = SnocList (type.Ctx, type) - -(.metaEnv) : type.SortedFamily -> type.MetaCtx -> type.Family -x.metaEnv [<] ctx = () -x.metaEnv (mctx :< meta) ctx = - (x.metaEnv mctx ctx, (x <<< (fst meta)) (snd meta) ctx) - -{- alas, non obviously strictly positive because we can't tell - Idris that signature must be strictly positive. - - It will be, though, if we complete the termination project --} - -data (.Term) : (signature : type.SortedFunctor) -> - type.SortedFamily -> type.SortedFamily where - Op : {0 signature : type.SortedFunctor} -> - signature (signature.Term x) ty ctx -> - signature.Term x ty ctx - Va : Var ty ctx -> signature.Term x ty ctx - Me : {0 ctx1, ctx2 : type.Ctx} -> - {0 signature : type.SortedFunctor} -> - x ty ctx2 -> - (signature.Term x).subst ctx2 ctx1 -> - signature.Term {type} x ty ctx1 - -(.sem) : (0 a : type.SortedFamily) -> - {0 signature : type.SortedFunctor} -> - (functoriality : signature.Map) => - (str : Strength signature) => - (metalg : signature.MetaAlg x a) => - signature.Term x -|> a -a.sem (Op args) = metalg.alg $ functoriality.map a.sem args -a.sem (Va x ) = MetaAlg.var metalg x -a.sem (Me m env) - = MetaAlg.mvar metalg m - $ mapSubst {a=signature.Term x, b = a} a.sem env - -(.envSem) : (0 a : type.SortedFamily) -> - {0 signature : type.SortedFunctor} -> - (str : Strength signature) => - (functoriality : signature.Map) => - (metalg : signature.MetaAlg x a) => - {mctx : type.MetaCtx} -> - (signature.Term x).metaEnv mctx ctx -> - a.metaEnv mctx ctx - -a.envSem {mctx = [<] } menv = () -a.envSem {mctx = mctx :< meta} (menv,v) = (a.envSem menv, a.sem v) - -(.TermAlg) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - signature.MetaAlg x (signature.Term x) -signature.TermAlg x = MkMetaAlg - { alg = Op - , mvar = \m => Me m -- bug: type-checker complains if we - -- eta-reduce - , var = Va - } - -(.BoxTermAlg) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - signature.MetaAlg x ([] (signature.Term x)) -signature.BoxTermAlg x = traverse Op Va (\m => Me m) - -(.TermPointedCoalg) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - type.PointedCoalgStruct (signature.Term x) -signature.TermPointedCoalg x = MkPointedCoalgStruct - { ren = - ([] (signature.Term x)).sem - {metalg = signature.BoxTermAlg x} - , var = Va - } - -(.SubstTermAlg) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - signature.MetaAlg x (signature.Term x ^ signature.Term x) -signature.SubstTermAlg x = traverse - { coalg = signature.TermPointedCoalg x - , alg = Op - , phi = id - , chi = \m => Me m - } - -%hint -(.TermMon) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - MonStruct (signature.Term x) -signature.TermMon x = MkSubstMonoidStruct - { var = Va - , mult = - (signature.Term x ^ signature.Term x).sem - {metalg = signature.SubstTermAlg x} - } - -%hint -(.TermMonoid) : - (0 signature : type.SortedFunctor) -> - (str : Strength signature) => - (functoriality : signature.Map) => - (0 x : type.SortedFamily) -> - signature.MonoidStruct (signature.Term x) -signature.TermMonoid x = MkSignatureMonoid - { mon = signature.TermMon x - , alg = Op - } - --- Not sure these are useful -data (+) : (signature1, signature2 : type.SortedFunctor) -> - type.SortedFunctor where - Lft : {signature1, signature2 : type.SortedFunctor} -> - (op : sig1 x ty ctx) -> (sig1 + sig2) x ty ctx - Rgt : {signature1, signature2 : type.SortedFunctor} -> - (op : sig2 x ty ctx) -> (sig1 + sig2) x ty ctx - -sum : (signatures : List $ (String, type.SortedFunctor)) -> - type.SortedFunctor -(sum signatures) x ty ctx = Any (\(name,sig) => sig x ty ctx) signatures - -prod : (signatures : List $ type.SortedFunctor) -> - type.SortedFunctor -(prod signatures) x ty ctx = All (\sig => sig x ty ctx) signatures - +import public SOAS.Algebra +import public SOAS.Context +import public SOAS.Family +import public SOAS.Strength +import public SOAS.Structure +import public SOAS.Theory +import public SOAS.Var + +-- -- TODO: (Setoid) coalgebras + +-- -- Does this follow from everything else? +-- mapSubstPos : {0 a,b : type.SortedFamily} -> (a -|> b) -> {0 ctx : type.Ctx} -> +-- {0 ctx' : type.Ctx} -> +-- a.subst ctx ctx' -> b.substNamed ctx ctx' +-- mapSubstPos f {ctx = (ctx :< (x :- ty))} theta Here +-- = f $ theta {ty} $ (%% _) {pos = Here} +-- mapSubstPos f {ctx = (ctx :< sy)} theta (There pos) +-- = mapSubstPos {a,b} f (theta . ThereVar) pos + +-- mapSubst : {0 a,b : type.SortedFamily} -> (a -|> b) -> {0 ctx : type.Ctx} -> +-- (a.subst ctx -||> b.subst ctx) +-- mapSubst f {ctx = ctx0} theta v = mapSubstPos {a,b} f theta v.pos + +-- (.MetaCtx) : Type -> Type +-- type.MetaCtx = SnocList (type.Ctx, type) + +-- (.metaEnv) : type.SortedFamily -> type.MetaCtx -> type.Family +-- x.metaEnv [<] ctx = () +-- x.metaEnv (mctx :< meta) ctx = +-- (x.metaEnv mctx ctx, (x <<< (fst meta)) (snd meta) ctx) + +-- {- alas, non obviously strictly positive because we can't tell +-- Idris that signature must be strictly positive. + +-- It will be, though, if we complete the termination project +-- -} + +-- data (.Term) : (signature : type.SortedFunctor) -> +-- type.SortedFamily -> type.SortedFamily where +-- Op : {0 signature : type.SortedFunctor} -> +-- signature (signature.Term x) ty ctx -> +-- signature.Term x ty ctx +-- Va : Var ty ctx -> signature.Term x ty ctx +-- Me : {0 ctx1, ctx2 : type.Ctx} -> +-- {0 signature : type.SortedFunctor} -> +-- x ty ctx2 -> +-- (signature.Term x).subst ctx2 ctx1 -> +-- signature.Term {type} x ty ctx1 + +-- (.sem) : (0 a : type.SortedFamily) -> +-- {0 signature : type.SortedFunctor} -> +-- (functoriality : signature.Map) => +-- (str : Strength signature) => +-- (metalg : signature.MetaAlg x a) => +-- signature.Term x -|> a +-- a.sem (Op args) = metalg.alg $ functoriality.map a.sem args +-- a.sem (Va x ) = MetaAlg.var metalg x +-- a.sem (Me m env) +-- = MetaAlg.mvar metalg m +-- $ mapSubst {a=signature.Term x, b = a} a.sem env + +-- (.envSem) : (0 a : type.SortedFamily) -> +-- {0 signature : type.SortedFunctor} -> +-- (str : Strength signature) => +-- (functoriality : signature.Map) => +-- (metalg : signature.MetaAlg x a) => +-- {mctx : type.MetaCtx} -> +-- (signature.Term x).metaEnv mctx ctx -> +-- a.metaEnv mctx ctx + +-- a.envSem {mctx = [<] } menv = () +-- a.envSem {mctx = mctx :< meta} (menv,v) = (a.envSem menv, a.sem v) + +-- -- Not sure these are useful +-- data (+) : (signature1, signature2 : type.SortedFunctor) -> +-- type.SortedFunctor where +-- Lft : {signature1, signature2 : type.SortedFunctor} -> +-- (op : sig1 x ty ctx) -> (sig1 + sig2) x ty ctx +-- Rgt : {signature1, signature2 : type.SortedFunctor} -> +-- (op : sig2 x ty ctx) -> (sig1 + sig2) x ty ctx + +-- sum : (signatures : List $ (String, type.SortedFunctor)) -> +-- type.SortedFunctor +-- (sum signatures) x ty ctx = Any (\(name,sig) => sig x ty ctx) signatures + +-- prod : (signatures : List $ type.SortedFunctor) -> +-- type.SortedFunctor +-- (prod signatures) x ty ctx = All (\sig => sig x ty ctx) signatures + +public export bind : (tys : type.Ctx) -> type.SortedFunctor bind tys = (<<< tys) - -infixr 3 -:> - --- Writing the descriptions directly is fine --- but deriving their functoriality and strength is annoying --- and not needed with enough metaprogramming - -data TypeSTLC = B | (-:>) TypeSTLC TypeSTLC - -data STLC : TypeSTLC .SortedFunctor where - App : {ty1, ty2 : TypeSTLC} -> - (f : a (ty1 -:> ty2) ctx) -> - (x : a ty1 ctx) -> STLC a ty2 ctx - Lam : (x : String) -> {ty1 : TypeSTLC} -> - (body : a ty2 (ctx :< (x :- ty1))) -> - STLC a (ty1 -:> ty2) ctx - -%hint -strSTLC : Strength STLC -strSTLC = MkStrength - { strength = \p,x,mon => \case - (App f x) => \theta => App (f theta) (x theta) - (Lam str {ty1} body) => \theta => - Lam str $ body $ extend p (mon.var (%% str)) - $ \v => mon.ren (theta v) - (\u => ThereVar u) -- Bug: can't eta-reduce - } - -%hint -functorialitySTLC : STLC .Map -functorialitySTLC = MkMap - { map = \h => \case - (App f x) => App (h f) (h x) - (Lam str body) => Lam str (h body) - } - -Ex1 : STLC .Term Var (B -:> (B -:> B) -:> B) [<] -Ex1 = Op $ Lam "x" $ - Op $ Lam "f" $ - Op $ App (Va $ %% "f") - (Va $ %% "x") - -beta : Singleton - {a = STLC .Term Var ty ctx} - (Op $ App (Op $ Lam x body) t) -> STLC .Term Var ty ctx -beta (Val (Op $ App (Op $ Lam x body) t)) = - (.sub) {mon = STLC .TermMon Var} body t -- bug: cannot determine mon automagically - -Ex2 : STLC .Term Var (B -:> B) [<] -Ex2 = Op $ App - (Op $ Lam "f" $ - Op $ Lam "x" $ - Op $ App - (Va $ %% "f") - (Va $ %% "x")) - (Op $ Lam "x" $ - Va $ %% "x") - -Ex3 : STLC .Term Var (B -:> B) [<] -Ex3 = beta $ Val Ex2 |