1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
module SOAS
import Data.List.Quantifiers
parameters {Ty : Type}
data Ctx : Type where
Lin : Ctx
(:<) : (ctx : Ctx) -> (ty : Ty) -> Ctx
data (.var) : Ctx -> Ty -> Type where
Here : (ctx :< ty).var ty
There : ctx.var ty -> (ctx :< sy).var ty
Family, SortedFamily : Type
Family = Ctx -> Type
SortedFamily = Ty -> Family
Var : SortedFamily
Var = flip (.var)
infixr 3 -|> , ~> , -<>, ^
infixl 3 <<<
(-|>) : (src,tgt : SortedFamily) -> Type
(src -|> tgt) = {ty : Ty} -> {ctx : Ctx} -> src ty ctx -> tgt ty ctx
(++) : (ctx1,ctx2 : Ctx) -> Ctx
ctx1 ++ [<] = ctx1
ctx1 ++ (ctx2 :< ty) = (ctx1 ++ ctx2) :< ty
(<<<) : SortedFamily -> Ctx -> SortedFamily
(f <<< ctx0) ty ctx = f ty (ctx ++ ctx0)
(.subst) : SortedFamily -> Ctx -> Ctx -> Type
f.subst ctx1 ctx2 = {ty : Ty} -> ctx1.var ty -> f ty ctx2
(~>) : (src, tgt : Ctx) -> Type
(~>) = (flip (.var)).subst
weakl : (ctx1, ctx2 : Ctx) -> ctx1 ~> (ctx1 ++ ctx2)
weakl ctx1 [<] x = x
weakl ctx1 (ctx2 :< z) x = There $ weakl ctx1 ctx2 x
weakr : (ctx1, ctx2 : Ctx) -> ctx2 ~> (ctx1 ++ ctx2)
weakr ctx1 (ctx2 :< _) Here = Here
weakr ctx1 (ctx2 :< sy) (There x) = There (weakr ctx1 ctx2 x)
(.copair) : (f : SortedFamily) -> {ctx2 : Ctx} -> f.subst ctx1 ctx -> f.subst ctx2 ctx -> f.subst (ctx1 ++ ctx2) ctx
f.copair {ctx2 = [<] } g1 g2 x = g1 x
f.copair {ctx2 = ctx2 :< ty} g1 g2 Here = g2 Here
f.copair {ctx2 = ctx2 :< ty} g1 g2 (There x) = f.copair g1 (g2 . There) x
extend : (f : SortedFamily) -> {ctx1 : Ctx} -> {ty : Ty} -> f ty ctx2 -> f.subst ctx1 ctx2 -> f.subst (ctx1 :< ty) ctx2
extend f {ctx2, ty} x theta = f.copair {ctx2 = [< ty]} theta workaround -- (\case {Here => x})
where
workaround : f.subst [< ty] ctx2
workaround Here = x
(-<>) : (src, tgt : SortedFamily) -> SortedFamily
(src -<> tgt) ty ctx = {ctx' : Ctx} -> src ty ctx' -> tgt ty (ctx ++ ctx')
Nil : SortedFamily -> SortedFamily
Nil f ty ctx = {ctx' : Ctx} -> ctx ~> ctx' -> f ty ctx'
-- TODO: (Setoid) coalgebras
(^) : (tgt, src : SortedFamily) -> SortedFamily
(tgt ^ src) ty ctx = {ctx' : Ctx} -> src.subst ctx ctx' -> tgt ty ctx'
hideCtx : {0 a : Ctx -> Type} ->
((ctx : Ctx) -> a ctx) -> {ctx : Ctx} -> a ctx
hideCtx f {ctx} = f ctx
(*) : (derivative, tangent : SortedFamily) -> SortedFamily
(derivative * tangent) ty ctx = (ctx' : Ctx ** (derivative ty ctx' , tangent.subst ctx' ctx))
record MonStruct {Ty : Type} (m : SortedFamily {Ty}) where
constructor MkSubstMonoidStruct
var : Var -|> m
mult : m -|> (m ^ m)
(.sub) : {Ty : Type} -> {m : SortedFamily {Ty}} -> {ty,sy : Ty} -> {ctx : Ctx {Ty}} ->
(mon : MonStruct m) => m sy (ctx :< ty) -> m ty ctx -> m sy ctx
t.sub s = mon.mult t (extend m s mon.var)
(.sub2) : {Ty : Type} -> {m : SortedFamily {Ty}} -> {ty1,ty2,sy : Ty} -> {ctx : Ctx {Ty}} ->
(mon : MonStruct m) => m sy (ctx :< ty1 :< ty2) -> m ty1 ctx -> m ty2 ctx -> m sy ctx
t.sub2 s1 s2 = mon.mult t (extend m s2 (extend m s1 mon.var))
record PointedCoalgStruct (x : SortedFamily) where
constructor MkPointedCoalgStruct
ren : x -|> [] x
var : Var -|> x
lift : (ctx : Ctx) -> (mon : PointedCoalgStruct p) => {ctx2 : Ctx} ->
(p.subst ctx1 ctx2) -> p.subst (ctx1 ++ ctx) (ctx2 ++ ctx)
lift [<] f x = f x
lift (ctx :< ty) f Here = mon.var Here
lift (ctx :< ty) f (There x) = mon.ren (lift ctx f x) There
Strength : {Ty : Type} -> (f : SortedFamily {Ty} -> SortedFamily {Ty}) -> Type
Strength f = {p,x : SortedFamily {Ty}} -> (mon : PointedCoalgStruct p) =>
(f (x ^ p)) -|> ((f x) ^ p)
SortedFunctor : {type : Type} -> Type
SortedFunctor {type} = SortedFamily {Ty=type} ->
SortedFamily {Ty=type}
SortedFunctorMap : {type : Type} -> SortedFunctor {type} -> Type
SortedFunctorMap {type} signature
= {a,b : SortedFamily {Ty = type}} -> (a -|> b) ->
signature a -|> signature b
parameters {Ty : Type} (signature : SortedFunctor {type = Ty})
(str : Strength {Ty} signature)
record (.MonoidStruct) (x : SortedFamily {Ty}) where
constructor MkSignatureMonoid
mon : MonStruct x
alg : signature x -|> x
parameters (meta : SortedFamily {Ty})
record MetaAlg (a : SortedFamily {Ty}) where
constructor MkMetaAlg
alg : signature a -|> a
var : Var -|> a
mvar : meta -|> (a ^ a)
traverse : {p,a : SortedFamily {Ty}} ->
(coalg : PointedCoalgStruct p) =>
(alg : signature a -|> a) ->
(phi : p -|> a) ->
(chi : meta -|> (a ^ a)) -> MetaAlg (a ^ p)
traverse {p,a} alg phi chi = MkMetaAlg
{ alg = \h,s => alg $ str h s
, var = \v,s => phi (s v)
, mvar = \m,e,s => chi m (\v => e v s)
}
namespace TermDef
mutual
{- alas, non obviously strictly positive because we can't tell
Idris that signature must be strictly positive.
It will be, though, if we complete the termination project
-}
public export
data Sub : {type : Type} -> {signature : SortedFunctor {type}} ->
SortedFamily {Ty = type} -> Ctx {Ty = type} ->
Ctx {Ty = type} -> Type where
Lin : Sub {type, signature} x [<] ctx
(:<) : Sub {type, signature} x shape ctx ->
signature.Term x ty ctx ->
Sub {type,signature} x (shape :< ty) ctx
public export
data (.Term) : {type : Type} ->
(signature : SortedFunctor {type}) ->
SortedFamily {Ty = type} ->
SortedFamily {Ty = type}
where
Op : {signature : SortedFunctor {type}} ->
signature (signature.Term x) ty ctx ->
signature.Term x ty ctx
Va : Var ty ctx -> signature.Term x ty ctx
Me : {ctx1, ctx2 : Ctx {Ty = type}} ->
x ty ctx2 ->
Sub (signature.Term {type} x)
ctx2 ctx1 ->
signature.Term {type} x ty ctx1
parameters {type : Type} {signature : SortedFunctor {type}}
MetaContext : Type
MetaContext = SnocList (Ctx {Ty=type}, type)
(.metaEnv) : SortedFamily {Ty=type} -> MetaContext ->
Family {Ty=type}
x.metaEnv [<] ctx = ()
x.metaEnv (mctx :< meta) ctx =
(x.metaEnv mctx ctx, (x <<< (fst meta)) (snd meta) ctx)
parameters {type : Type} {signature : SortedFunctor {type}}
{auto signatureMap : SortedFunctorMap signature}
{auto str : Strength {Ty = type} signature}
parameters {x : SortedFamily {Ty = type}}
(a : SortedFamily {Ty = type})
{auto metalg : MetaAlg {Ty = type} signature str x a}
(.envSem) : {ctx : Ctx} -> {mctx : MetaContext {signature}} ->
(signature.Term x).metaEnv mctx ctx ->
a.metaEnv mctx ctx
(.subSem) : Sub (signature.Term x) ctx1 ctx2 ->
a.subst ctx1 ctx2
(.sem) : signature.Term x -|> a
(.envSem) {mctx = [<] } menv = ()
(.envSem) {mctx = mctx :< meta} (menv,v) =
( (.envSem) menv
, (.sem) v
)
(.sem) (Op args) = MetaAlg.alg _ _ _ metalg
$ signatureMap {b = a} (.sem) args
(.sem) (Va x ) = MetaAlg.var _ _ _ metalg x
(.sem) {ctx = ctx1''} (Me m env) = MetaAlg.mvar _ _ _ metalg m $ ((.subSem) env)
data (+) : {type : Type} -> (signature1, signature2 : SortedFunctor {type}) ->
SortedFunctor {type} where
Lft : {signature1, signature2 : SortedFunctor {type}} ->
(op : sig1 x ty ctx) -> (sig1 + sig2) x ty ctx
Rgt : {signature1, signature2 : SortedFunctor {type}} ->
(op : sig2 x ty ctx) -> (sig1 + sig2) x ty ctx
sum : {type : Type} -> (signatures : List $ (String, SortedFunctor {type})) ->
SortedFunctor {type}
(sum signatures) x ty ctx = Any (\(name,sig) => sig x ty ctx) signatures
prod : {type : Type} -> (signatures : List $ SortedFunctor {type}) ->
SortedFunctor {type}
(prod signatures) x ty ctx = All (\sig => sig x ty ctx) signatures
bind : {type : Type} -> (tys : Ctx {Ty = type}) -> SortedFunctor {type}
bind tys = (<<< tys)
infixr 3 -:>
data TypeSTLC = B | (-:>) TypeSTLC TypeSTLC
data STLC : SortedFunctor {type = TypeSTLC} where
App : (f : a (ty1 -:> ty2) ctx) -> (x : a ty1 ctx) -> STLC a ty2 ctx
Lam : (body : a ty2 (ctx :< ty1)) ->
STLC a (ty1 -:> ty2) ctx
foo : STLC .Term Var (B -:> (B -:> B) -:> B) [<]
foo = Op (Lam (Op (Lam (Op (App (Va Here) (Op (App (Va Here) (Va (There Here)))))))))
|