diff options
author | Greg Brown <greg.brown01@ed.ac.uk> | 2022-11-22 16:54:10 +0000 |
---|---|---|
committer | Greg Brown <greg.brown01@ed.ac.uk> | 2022-11-22 16:54:10 +0000 |
commit | a5085b3daed8028bd065d41553c9e8630773926b (patch) | |
tree | fd29c89065841237e87aa78f80facd46d499ec3e /src | |
parent | 1d762c91ed16733ffb76dcb2503fe2c41d669aac (diff) |
Define first-order terms.
Diffstat (limited to 'src')
-rw-r--r-- | src/Soat/FirstOrder/Term.idr | 171 |
1 files changed, 171 insertions, 0 deletions
diff --git a/src/Soat/FirstOrder/Term.idr b/src/Soat/FirstOrder/Term.idr new file mode 100644 index 0000000..c8da5d9 --- /dev/null +++ b/src/Soat/FirstOrder/Term.idr @@ -0,0 +1,171 @@ +module Soat.FirstOrder.Term + +import Control.Relation + +import Soat.Data.Product +import Soat.FirstOrder.Algebra +import Soat.FirstOrder.Signature +import Soat.Relation + +%default total +%hide Control.Relation.Equivalence + +public export +data Term : (0 sig : Signature) -> (0 _ : sig.T -> Type) -> sig.T -> Type where + Done : (i : x t) -> Term sig x t + Call : (op : Op sig t) -> (ts : Term sig x ^ op.arity) -> Term sig x t + +Environment : {a : Type} -> (x, y : a -> Type) -> Type +Environment {a} x y = (t : a) -> x t -> y t + +record SetoidEnvironment {a : Type} (x, y : ISetoid a) where + f : Environment {a} x.U y.U + cong : (t : a) -> {u, v : x.U t} -> x.rel t u v -> y.rel t (f t u) (f t v) + +public export +bindTerm : {auto a : RawAlgebra sig} + -> Environment x a.U -> {t : _} -> Term sig x t -> a.U t + +public export +bindTerms : {auto a : RawAlgebra sig} + -> Environment x a.U -> {ts : _} -> Term sig x ^ ts -> a.U ^ ts + +bindTerm env (Done i) = env _ i +bindTerm {a = a} env (Call op ts) = a.sem op (bindTerms env ts) + +bindTerms env [] = [] +bindTerms env (t :: ts) = bindTerm env t :: bindTerms env ts + +public export +bindTermsIsMap : {auto a : RawAlgebra sig} + -> (env : Environment x a.U) -> {ts : _} -> (tms : Term sig x ^ ts) + -> bindTerms (\tm => env tm) tms = map (\t => bindTerm (\tm => env tm)) tms +bindTermsIsMap env [] = Refl +bindTermsIsMap env (t :: ts) = cong ((::) (bindTerm env t)) (bindTermsIsMap env ts) + +namespace Rel + public export + data (~=~) : forall x . (0 r : IRel x) -> IRel (Term sig x) + where + Done' : {0 x : sig.T -> Type} -> {0 r : IRel x} + -> {t : sig.T} -> {i, j : x t} + -> r t i j + -> (~=~) {sig = sig} {x = x} r t (Done i) (Done j) + Call' : {0 x : sig.T -> Type} -> {0 r : IRel x} + -> {t : sig.T} -> (op : Op sig t) -> {tms, tms' : Term sig x ^ op.arity} + -> Pointwise ((~=~) {sig = sig} {x = x} r) tms tms' + -> (~=~) {sig = sig} {x = x} r t (Call op tms) (Call op tms') + + tmRelRefl : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel + -> {t : sig.T} -> (tm : Term sig V t) -> (~=~) rel t tm tm + + tmsRelRefl : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel + -> {ts : List sig.T} -> (tms : Term sig V ^ ts) -> Pointwise ((~=~) rel) tms tms + + tmRelRefl refl (Done i) = Done' reflexive + tmRelRefl refl (Call op ts) = Call' op (tmsRelRefl refl ts) + + tmsRelRefl refl [] = [] + tmsRelRefl refl (t :: ts) = tmRelRefl refl t :: tmsRelRefl refl ts + + tmRelSym : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ISymmetric V rel) + -> {t : sig.T} -> {tm, tm' : Term sig V t} -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm + + tmsRelSym : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ISymmetric V rel) + -> {ts : List sig.T} -> {tms, tms' : Term sig V ^ ts} + -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms + + tmRelSym sym (Done' i) = Done' (symmetric i) + tmRelSym sym (Call' op ts) = Call' op (tmsRelSym sym ts) + + tmsRelSym sym [] = [] + tmsRelSym sym (t :: ts) = tmRelSym sym t :: tmsRelSym sym ts + + tmRelTrans : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ITransitive V rel) + -> {t : sig.T} -> {tm, tm', tm'' : Term sig V t} + -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm'' -> (~=~) rel t tm tm'' + + tmsRelTrans : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ITransitive V rel) + -> {ts : List sig.T} -> {tms, tms', tms'' : Term sig V ^ ts} + -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms'' + -> Pointwise ((~=~) rel) tms tms'' + + tmRelTrans trans (Done' i) (Done' j) = Done' (transitive i j) + tmRelTrans trans (Call' op ts) (Call' _ ts') = Call' op (tmsRelTrans trans ts ts') + + tmsRelTrans trans [] [] = [] + tmsRelTrans trans (t :: ts) (t' :: ts') = tmRelTrans trans t t' :: tmsRelTrans trans ts ts' + + export + tmRelEq : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IEquivalence V rel + -> IEquivalence _ ((~=~) {sig = sig} {x = V} rel) + tmRelEq eq t = MkEquivalence + (MkReflexive $ tmRelRefl (\t => (eq t).refl) _) + (MkSymmetric $ tmRelSym (\t => (eq t).sym)) + (MkTransitive $ tmRelTrans (\t => (eq t).trans)) + +public export +Free : (0 V : sig.T -> Type) -> RawAlgebra sig +Free v = MakeRawAlgebra (Term sig v) Call + +public export +FreeIsAlgebra : (v : ISetoid sig.T) -> IsAlgebra sig (Free v.U) ((~=~) v.rel) +FreeIsAlgebra v = MkIsAlgebra (tmRelEq v.equivalence) Call' + +public export +FreeAlgebra : ISetoid sig.T -> Algebra sig +FreeAlgebra v = MkAlgebra _ _ (FreeIsAlgebra v) + +public export 0 +bindTermCong : {a : Algebra sig} -> (env : SetoidEnvironment x a.setoid) + -> {t : sig.T} -> {tm, tm' : Term sig x.U t} -> (~=~) x.rel t tm tm' + -> a.rel t (bindTerm {a = a.raw} env.f tm) (bindTerm {a = a.raw} env.f tm') + +public export 0 +bindTermsCong : {a : Algebra sig} -> (env : SetoidEnvironment x a.setoid) + -> {ts : List sig.T} -> {tms, tms' : Term sig x.U ^ ts} -> Pointwise ((~=~) x.rel) tms tms' + -> Pointwise a.rel (bindTerms {a = a.raw} env.f tms) (bindTerms {a = a.raw} env.f tms') + +bindTermCong env (Done' i) = env.cong _ i +bindTermCong {a = a} env (Call' op ts) = a.algebra.semCong op (bindTermsCong env ts) + +bindTermsCong env [] = [] +bindTermsCong env {tms = (_ :: _)} {tms' = (_ :: _)} (t :: ts) = + bindTermCong env t :: bindTermsCong env ts + +public export +bindHomo : (a : Algebra sig) -> (env : SetoidEnvironment v a.setoid) + -> IsHomomorphism (FreeAlgebra v) a (\t => bindTerm {a = a.raw} env.f) +bindHomo a env = MkIsHomomorphism + (\t, eq => bindTermCong env eq) + (\op, tms => + a.algebra.semCong op $ + map (\t => (a.algebra.equivalence t).equalImpliesEq) $ + equalImpliesPwEq $ + bindTermsIsMap {a = a.raw} env.f tms) + +public export +bind : {a : Algebra sig} -> (env : SetoidEnvironment v a.setoid) -> Homomorphism (FreeAlgebra v) a +bind env = MkHomomorphism _ (bindHomo _ env) + +public export 0 +bindUnique : {a : Algebra sig} -> (env : SetoidEnvironment v a.setoid) + -> (f : Homomorphism (FreeAlgebra v) a) + -> ({t : sig.T} -> (i : v.U t) -> a.rel t (f.f t (Done i)) (env.f t i)) + -> {t : sig.T} -> (tm : Term sig v.U t) + -> a.rel t (f.f t tm) ((Term.bind {a = a} env).f t tm) + +public export 0 +bindsUnique : {a : Algebra sig} -> (env : SetoidEnvironment v a.setoid) + -> (f : Homomorphism (FreeAlgebra v) a) + -> ({t : sig.T} -> (i : v.U t) -> a.rel t (f.f t (Done i)) (env.f t i)) + -> {ts : List sig.T} -> (tms : Term sig v.U ^ ts) + -> Pointwise a.rel (map f.f tms) (bindTerms {a = a.raw} env.f tms) + +bindUnique env f fDone (Done i) = fDone i +bindUnique env f fDone (Call op ts) = (a.algebra.equivalence _).transitive + (f.homo.semHomo op ts) + (a.algebra.semCong op $ bindsUnique env f fDone ts) + +bindsUnique env f fDone [] = [] +bindsUnique env f fDone (t :: ts) = bindUnique env f fDone t :: bindsUnique env f fDone ts |