diff options
Diffstat (limited to 'src/Data/Product.idr')
-rw-r--r-- | src/Data/Product.idr | 227 |
1 files changed, 227 insertions, 0 deletions
diff --git a/src/Data/Product.idr b/src/Data/Product.idr new file mode 100644 index 0000000..348fa44 --- /dev/null +++ b/src/Data/Product.idr @@ -0,0 +1,227 @@ +module Data.Product + +import Data.List.Elem +import Data.Setoid.Indexed + +%default total + +infix 10 ^ +infix 5 ++ + +-- Definitions + +public export +data (^) : (0 _ : a -> Type) -> List a -> Type where + Nil : x ^ [] + (::) : {0 x : a -> Type} -> x i -> x ^ is -> x ^ (i :: is) + +public export +ary : List Type -> Type -> Type +ary [] y = y +ary (x :: xs) y = x -> ary xs y + +-- Conversions + +public export +uncurry : map x is `ary` a -> x ^ is -> a +uncurry f [] = f +uncurry f (x :: xs) = uncurry (f x) xs + +-- Destructors + +public export +head : x ^ (i :: is) -> x i +head (x :: xs) = x + +public export +tail : x ^ (i :: is) -> x ^ is +tail (x :: xs) = xs + +public export +consHeadTail : (xs : x ^ (i :: is)) -> head xs :: tail xs = xs +consHeadTail (x :: xs) = Refl + +public export +index : x ^ is -> Elem i is -> x i +index xs Here = head xs +index xs (There elem) = index (tail xs) elem + +-- Constructors + +public export +tabulate : {is : List a} -> ({i : a} -> Elem i is -> x i) -> x ^ is +tabulate {is = []} f = [] +tabulate {is = (i :: is)} f = f Here :: tabulate (f . There) + +public export +indexTabulate : forall x . (0 f : {i : a} -> Elem i is -> x i) -> (elem : Elem i is) + -> index (tabulate f) elem = f elem +indexTabulate f Here = Refl +indexTabulate f (There elem) = indexTabulate (f . There) elem + +-- Operations + +public export +map : (f : (i : a) -> x i -> y i) -> {is : List a} -> x ^ is -> y ^ is +map f [] = [] +map f (x :: xs) = f _ x :: map f xs + +public export +indexMap : forall x, y . {0 f : (i : a) -> x i -> y i} -> (xs : x ^ is) -> (elem : Elem i is) + -> index (map f xs) elem = f i (index xs elem) +indexMap (x :: xs) Here = Refl +indexMap (x :: xs) (There elem) = indexMap xs elem + +public export +mapId : (xs : x ^ is) -> map (\_ => Basics.id) xs = xs +mapId [] = Refl +mapId (x :: xs) = cong ((::) x) $ mapId xs + +public export +mapComp : forall x, y, z . {0 f : (i : a) -> y i -> z i} -> {0 g : (i : a) -> x i -> y i} + -> (xs : x ^ is) -> map (\i => f i . g i) xs = map f (map g xs) +mapComp [] = Refl +mapComp (x :: xs) = cong ((::) (f _ (g _ x))) $ mapComp xs + +public export +(++) : x ^ is -> x ^ js -> x ^ (is ++ js) +(++) [] ys = ys +(++) (x :: xs) ys = x :: (xs ++ ys) + +public export +wrap : (0 f : a -> b) -> (x . f) ^ is -> x ^ map f is +wrap f [] = [] +wrap f (x :: xs) = x :: wrap f xs + +public export +mapWrap : forall x, y . {0 f : (i : b) -> x i -> y i} -> (0 g : a -> b) -> (xs : (x . g) ^ is) + -> map f (wrap g xs) = wrap g (map (\i => f (g i)) xs) +mapWrap g [] = Refl +mapWrap g (x :: xs) = cong ((::) (f (g _) x)) $ mapWrap g xs + +public export +unwrap : (0 f : a -> b) -> {is : _} -> x ^ map f is -> (x . f) ^ is +unwrap f {is = []} [] = [] +unwrap f {is = (i :: is)} (x :: xs) = x :: unwrap f xs + +public export +mapUnwrap : forall x, y . {0 f : (i : b) -> x i -> y i} -> (0 g : a -> b) + -> {is : _} -> (xs : x ^ map g is) + -> map (\i => f (g i)) {is} (unwrap g xs) = unwrap g {is} (map f xs) +mapUnwrap g {is = []} [] = Refl +mapUnwrap g {is = (i :: is)} (x :: xs) = cong (Product.(::) (f (g i) x)) $ mapUnwrap g xs + +public export +unwrapWrap : (0 x : a -> Type) -> (xs : (x . f) ^ is) -> unwrap f (wrap {x} f xs) = xs +unwrapWrap u [] = Refl +unwrapWrap u (x :: xs) = cong ((::) x) $ unwrapWrap u xs + +public export +wrapUnwrap : {is : _} -> (xs : x ^ map f is) -> wrap f {is} (unwrap f xs) = xs +wrapUnwrap {is = []} [] = Refl +wrapUnwrap {is = (i :: is)} (x :: xs) = cong ((::) x) $ wrapUnwrap xs + +-- Relations + +namespace Pointwise + public export + data Pointwise : (0 _ : (i : a) -> Rel (x i)) -> forall is . Rel (x ^ is) where + Nil : Pointwise rel [] [] + (::) : forall b, x, y . {0 xs, ys : b ^ is} -> {0 rel : (i : a) -> Rel (b i)} + -> (r : rel i x y) -> (rs : Pointwise rel xs ys) -> Pointwise rel (x :: xs) (y :: ys) + + -- Destructors + + public export + index : Pointwise rel xs ys -> (elem : Elem i is) -> rel i (index xs elem) (index ys elem) + index (r :: rs) Here = r + index (r :: rs) (There elem) = index rs elem + + -- Operators + + public export + map : forall b . {0 r, s : (i : a) -> Rel (b i)} + -> ((i : a) -> {x, y : b i} -> r i x y -> s i x y) + -> {is : List a} -> {xs, ys : b ^ is} -> Pointwise r {is} xs ys -> Pointwise s {is} xs ys + map f [] = [] + map f (r :: rs) = f _ r :: map f rs + + -- Relational Properties + + pwEqImpliesEqual : Pointwise (\_ => Equal) xs ys -> xs = ys + pwEqImpliesEqual [] = Refl + pwEqImpliesEqual (r :: rs) = trans + (sym $ consHeadTail _) + (trans (cong2 (::) r (pwEqImpliesEqual rs)) (consHeadTail _)) + + equalImpliesPwEq : {xs, ys : b ^ is} -> xs = ys -> Pointwise (\_ => Equal) xs ys + equalImpliesPwEq {xs = []} {ys = []} eq = [] + equalImpliesPwEq {xs = (x :: xs)} {ys = (y :: ys)} eq = + cong head eq :: equalImpliesPwEq (cong tail eq) + + pwRefl : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u : x i) -> rel i u u) + -> {is : List a} -> (xs : x ^ is) -> Pointwise rel xs xs + pwRefl refl [] = [] + pwRefl refl (x :: xs) = refl _ x :: pwRefl refl xs + + pwSym : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u, v : x i) -> rel i u v -> rel i v u) + -> {is : List a} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel ys xs + pwSym sym [] = [] + pwSym sym (r :: rs) = sym _ _ _ r :: pwSym sym rs + + pwTrans : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u, v, w : x i) -> rel i u v -> rel i v w -> rel i u w) + -> {is : List a} -> {xs, ys, zs : x ^ is} + -> Pointwise rel xs ys -> Pointwise rel ys zs -> Pointwise rel xs zs + pwTrans trans [] [] = [] + pwTrans trans (r :: rs) (s :: ss) = trans _ _ _ _ r s :: pwTrans trans rs ss + + public export + pwEquivalence : IndexedEquivalence a x -> IndexedEquivalence (List a) ((^) x) + pwEquivalence eq = MkIndexedEquivalence + { relation = \_ => Pointwise eq.relation + , reflexive = \_ => pwRefl eq.reflexive + , symmetric = \_, _, _ => pwSym eq.symmetric + , transitive = \_, _, _, _ => pwTrans eq.transitive + } + + public export + pwSetoid : IndexedSetoid a -> IndexedSetoid (List a) + pwSetoid x = MkIndexedSetoid ((^) x.U) (pwEquivalence x.equivalence) + + -- Introductors and Eliminators + + public export + mapIntro'' : forall x, y . {0 rel : (i : a) -> Rel (x i)} -> {0 rel' : (i : a) -> Rel (y i)} + -> {0 f, g : (i : a) -> x i -> y i} + -> (cong : (i : a) -> (u, v : x i) -> rel i u v -> rel' i (f i u) (g i v)) + -> {is : _} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel' (map f xs) (map g ys) + mapIntro'' cong [] = [] + mapIntro'' cong (r :: rs) = cong _ _ _ r :: mapIntro'' cong rs + + public export + mapIntro' : forall x, y . {0 rel : (i : a) -> Rel (x i)} -> {0 rel' : (i : a) -> Rel (y i)} + -> {0 f, g : (i : a) -> x i -> y i} + -> (cong : (i : a) -> {u, v : x i} -> rel i u v -> rel' i (f i u) (g i v)) + -> {is : _} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel' (map f xs) (map g ys) + mapIntro' cong = mapIntro'' (\t, _, _ => cong t) + + public export + mapIntro : (f : x ~> y) -> {is : _} -> {xs, ys : x.U ^ is} + -> Pointwise x.equivalence.relation xs ys + -> Pointwise y.equivalence.relation (map f.H xs) (map f.H ys) + mapIntro f = mapIntro' f.homomorphic + + public export + wrapIntro : forall f . {0 rel : (i : a) -> Rel (x i)} -> {0 xs, ys : (x . f) ^ is} + -> Pointwise (\i => rel (f i)) xs ys -> Pointwise rel (wrap f xs) (wrap f ys) + wrapIntro [] = [] + wrapIntro (r :: rs) = r :: wrapIntro rs + + public export + unwrapIntro : forall f . {0 rel : (i : b) -> Rel (x i)} -> {is : _} -> {0 xs, ys : x ^ map f is} + -> Pointwise rel xs ys -> Pointwise (\i => rel (f i)) {is = is} (unwrap f xs) (unwrap f ys) + unwrapIntro {is = []} [] = [] + unwrapIntro {is = (i :: is)} (r :: rs) = r :: unwrapIntro rs |