diff options
Diffstat (limited to 'src/Data/Setoid/Product.idr')
-rw-r--r-- | src/Data/Setoid/Product.idr | 107 |
1 files changed, 107 insertions, 0 deletions
diff --git a/src/Data/Setoid/Product.idr b/src/Data/Setoid/Product.idr new file mode 100644 index 0000000..90510e5 --- /dev/null +++ b/src/Data/Setoid/Product.idr @@ -0,0 +1,107 @@ +module Data.Setoid.Product + +import Data.List.Elem +import public Data.Product +import Data.Setoid.Indexed + +public export +data Pointwise : (0 _ : (i : a) -> Rel (x i)) -> forall is . Rel (x ^ is) where + Nil : Pointwise rel [] [] + (::) : forall b, x, y . {0 xs, ys : b ^ is} -> {0 rel : (i : a) -> Rel (b i)} + -> (r : rel i x y) -> (rs : Pointwise rel xs ys) -> Pointwise rel (x :: xs) (y :: ys) + +-- Destructors + +public export +index : Pointwise rel xs ys -> (elem : Elem i is) -> rel i (index xs elem) (index ys elem) +index (r :: rs) Here = r +index (r :: rs) (There elem) = index rs elem + +-- Operators + +public export +map : forall b . {0 r, s : (i : a) -> Rel (b i)} + -> ((i : a) -> {x, y : b i} -> r i x y -> s i x y) + -> {is : List a} -> {xs, ys : b ^ is} -> Pointwise r {is} xs ys -> Pointwise s {is} xs ys +map f [] = [] +map f (r :: rs) = f _ r :: map f rs + +-- Relational Properties + +pwEqImpliesEqual : Pointwise (\_ => Equal) xs ys -> xs = ys +pwEqImpliesEqual [] = Refl +pwEqImpliesEqual (r :: rs) = trans + (sym $ consHeadTail _) + (trans (cong2 (::) r (pwEqImpliesEqual rs)) (consHeadTail _)) + +equalImpliesPwEq : {xs, ys : b ^ is} -> xs = ys -> Pointwise (\_ => Equal) xs ys +equalImpliesPwEq {xs = []} {ys = []} eq = [] +equalImpliesPwEq {xs = (x :: xs)} {ys = (y :: ys)} eq = + cong head eq :: equalImpliesPwEq (cong tail eq) + +pwRefl : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u : x i) -> rel i u u) + -> {is : List a} -> (xs : x ^ is) -> Pointwise rel xs xs +pwRefl refl [] = [] +pwRefl refl (x :: xs) = refl _ x :: pwRefl refl xs + +pwSym : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u, v : x i) -> rel i u v -> rel i v u) + -> {is : List a} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel ys xs +pwSym sym [] = [] +pwSym sym (r :: rs) = sym _ _ _ r :: pwSym sym rs + +pwTrans : {0 x : a -> Type} -> {0 rel : (i : a) -> Rel (x i)} + -> ((i : a) -> (u, v, w : x i) -> rel i u v -> rel i v w -> rel i u w) + -> {is : List a} -> {xs, ys, zs : x ^ is} + -> Pointwise rel xs ys -> Pointwise rel ys zs -> Pointwise rel xs zs +pwTrans trans [] [] = [] +pwTrans trans (r :: rs) (s :: ss) = trans _ _ _ _ r s :: pwTrans trans rs ss + +public export +pwEquivalence : IndexedEquivalence a x -> IndexedEquivalence (List a) ((^) x) +pwEquivalence eq = MkIndexedEquivalence + { relation = \_ => Pointwise eq.relation + , reflexive = \_ => pwRefl eq.reflexive + , symmetric = \_, _, _ => pwSym eq.symmetric + , transitive = \_, _, _, _ => pwTrans eq.transitive + } + +public export +pwSetoid : IndexedSetoid a -> IndexedSetoid (List a) +pwSetoid x = MkIndexedSetoid ((^) x.U) (pwEquivalence x.equivalence) + +-- Introductors and Eliminators + +public export +mapIntro'' : forall x, y . {0 rel : (i : a) -> Rel (x i)} -> {0 rel' : (i : a) -> Rel (y i)} + -> {0 f, g : (i : a) -> x i -> y i} + -> (cong : (i : a) -> (u, v : x i) -> rel i u v -> rel' i (f i u) (g i v)) + -> {is : _} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel' (map f xs) (map g ys) +mapIntro'' cong [] = [] +mapIntro'' cong (r :: rs) = cong _ _ _ r :: mapIntro'' cong rs + +public export +mapIntro' : forall x, y . {0 rel : (i : a) -> Rel (x i)} -> {0 rel' : (i : a) -> Rel (y i)} + -> {0 f, g : (i : a) -> x i -> y i} + -> (cong : (i : a) -> {u, v : x i} -> rel i u v -> rel' i (f i u) (g i v)) + -> {is : _} -> {xs, ys : x ^ is} -> Pointwise rel xs ys -> Pointwise rel' (map f xs) (map g ys) +mapIntro' cong = mapIntro'' (\t, _, _ => cong t) + +public export +mapIntro : (f : x ~> y) -> {is : _} -> {xs, ys : x.U ^ is} + -> Pointwise x.equivalence.relation xs ys + -> Pointwise y.equivalence.relation (map f.H xs) (map f.H ys) +mapIntro f = mapIntro' f.homomorphic + +public export +wrapIntro : forall f . {0 rel : (i : a) -> Rel (x i)} -> {0 xs, ys : (x . f) ^ is} + -> Pointwise (\i => rel (f i)) xs ys -> Pointwise rel (wrap f xs) (wrap f ys) +wrapIntro [] = [] +wrapIntro (r :: rs) = r :: wrapIntro rs + +public export +unwrapIntro : forall f . {0 rel : (i : b) -> Rel (x i)} -> {is : _} -> {0 xs, ys : x ^ map f is} + -> Pointwise rel xs ys -> Pointwise (\i => rel (f i)) {is = is} (unwrap f xs) (unwrap f ys) +unwrapIntro {is = []} [] = [] +unwrapIntro {is = (i :: is)} (r :: rs) = r :: unwrapIntro rs |