diff options
Diffstat (limited to 'src/Soat/FirstOrder/Term.idr')
-rw-r--r-- | src/Soat/FirstOrder/Term.idr | 187 |
1 files changed, 85 insertions, 102 deletions
diff --git a/src/Soat/FirstOrder/Term.idr b/src/Soat/FirstOrder/Term.idr index f9f0879..69bdcfc 100644 --- a/src/Soat/FirstOrder/Term.idr +++ b/src/Soat/FirstOrder/Term.idr @@ -1,11 +1,11 @@ module Soat.FirstOrder.Term -import Data.Morphism.Indexed import Data.Setoid.Indexed import Soat.Data.Product import Soat.FirstOrder.Algebra import Soat.FirstOrder.Signature + import Syntax.PreorderReasoning.Setoid %default total @@ -16,10 +16,12 @@ data Term : (0 sig : Signature) -> (0 _ : sig.T -> Type) -> sig.T -> Type where Call : (op : Op sig t) -> (ts : Term sig v ^ op.arity) -> Term sig v t public export -bindTerm : {auto a : RawAlgebra sig} -> IFunc v a.U -> {t : _} -> Term sig v t -> a.U t +bindTerm : {auto a : RawAlgebra sig} -> ((t : sig.T) -> v t -> a.U t) + -> {t : _} -> Term sig v t -> a.U t public export -bindTerms : {auto a : RawAlgebra sig} -> IFunc v a.U -> {ts : _} -> Term sig v ^ ts -> a.U ^ ts +bindTerms : {auto a : RawAlgebra sig} -> ((t : sig.T) -> v t -> a.U t) + -> {ts : _} -> Term sig v ^ ts -> a.U ^ ts bindTerm env (Done i) = env _ i bindTerm {a = a} env (Call op ts) = a.sem op (bindTerms env ts) @@ -29,197 +31,178 @@ bindTerms env (t :: ts) = bindTerm env t :: bindTerms env ts public export bindTermsIsMap : {auto a : RawAlgebra sig} - -> (env : IFunc v a.U) -> {ts : _} -> (tms : Term sig v ^ ts) + -> (env : (t : sig.T) -> v t -> a.U t) -> {ts : _} -> (tms : Term sig v ^ ts) -> bindTerms (\tm => env tm) tms = map (\t => bindTerm (\tm => env tm)) tms bindTermsIsMap env [] = Refl bindTermsIsMap env (t :: ts) = cong ((::) (bindTerm env t)) (bindTermsIsMap env ts) --- FIXME: these names shouldn't be public. Indication of bad API design namespace Rel public export - data (~=~) : forall v . (0 r : IRel v) -> IRel (Term sig v) + data (~=~) : forall v . (0 r : (t : sig.T) -> Rel (v t)) -> (t : sig.T) -> Rel (Term sig v t) where - Done' : {0 v : sig.T -> Type} -> {0 r : IRel v} + Done : {0 v : sig.T -> Type} -> {0 r : (t : sig.T) -> Rel (v t)} -> {t : sig.T} -> {i, j : v t} -> r t i j -> (~=~) {sig} {v} r t (Done i) (Done j) - Call' : {0 v : sig.T -> Type} -> {0 r : IRel v} + Call : {0 v : sig.T -> Type} -> {0 r : (t : sig.T) -> Rel (v t)} -> {t : sig.T} -> (op : Op sig t) -> {tms, tms' : Term sig v ^ op.arity} -> Pointwise ((~=~) {sig} {v} r) tms tms' -> (~=~) {sig} {v} r t (Call op tms) (Call op tms') - public export - tmRelEqualIsEqual : (~=~) (\_ => Equal) t tm tm' -> tm = tm' - - public export - tmsRelEqualIsEqual : Pointwise ((~=~) (\_ => Equal)) tms tms' -> tms = tms' - - tmRelEqualIsEqual (Done' eq) = cong Done eq - tmRelEqualIsEqual (Call' op eqs) = cong (Call op) $ tmsRelEqualIsEqual eqs - - tmsRelEqualIsEqual [] = Refl - tmsRelEqualIsEqual (eq :: eqs) = cong2 (::) (tmRelEqualIsEqual eq) (tmsRelEqualIsEqual eqs) - - public export - tmRelRefl : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel + tmRelRefl : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (refl : (t : sig.T) -> (x : V t) -> rel t x x) -> {t : sig.T} -> (tm : Term sig V t) -> (~=~) rel t tm tm - public export - tmsRelRefl : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel + tmsRelRefl : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (refl : (t : sig.T) -> (x : V t) -> rel t x x) -> {ts : List sig.T} -> (tms : Term sig V ^ ts) -> Pointwise ((~=~) rel) tms tms - tmRelRefl refl (Done i) = Done' reflexive - tmRelRefl refl (Call op ts) = Call' op (tmsRelRefl refl ts) + tmRelRefl refl (Done i) = Done (refl _ i) + tmRelRefl refl (Call op ts) = Call op (tmsRelRefl refl ts) tmsRelRefl refl [] = [] tmsRelRefl refl (t :: ts) = tmRelRefl refl t :: tmsRelRefl refl ts - public export - tmRelReflexive : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel - -> {t : sig.T} -> {tm, tm' : Term sig V t} -> tm = tm' -> (~=~) rel t tm tm' - tmRelReflexive refl Refl = tmRelRefl refl _ - - public export - tmsRelReflexive : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IReflexive V rel - -> {ts : List sig.T} -> {tms, tms' : Term sig V ^ ts} - -> tms = tms' -> Pointwise ((~=~) rel) tms tms' - tmsRelReflexive refl Refl = tmsRelRefl refl _ - - public export - tmRelSym : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ISymmetric V rel) + tmRelSym : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (sym : (t : sig.T) -> (x, y : V t) -> rel t x y -> rel t y x) -> {t : sig.T} -> {tm, tm' : Term sig V t} -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm - public export - tmsRelSym : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ISymmetric V rel) + tmsRelSym : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (sym : (t : sig.T) -> (x, y : V t) -> rel t x y -> rel t y x) -> {ts : List sig.T} -> {tms, tms' : Term sig V ^ ts} -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms - tmRelSym sym (Done' i) = Done' (symmetric i) - tmRelSym sym (Call' op ts) = Call' op (tmsRelSym sym ts) + tmRelSym sym (Done i) = Done (sym _ _ _ i) + tmRelSym sym (Call op ts) = Call op (tmsRelSym sym ts) tmsRelSym sym [] = [] tmsRelSym sym (t :: ts) = tmRelSym sym t :: tmsRelSym sym ts - public export - tmRelTrans : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ITransitive V rel) + tmRelTrans : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (trans : (t : sig.T) -> (x, y, z : V t) -> rel t x y -> rel t y z -> rel t x z) -> {t : sig.T} -> {tm, tm', tm'' : Term sig V t} -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm'' -> (~=~) rel t tm tm'' - public export - tmsRelTrans : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> (ITransitive V rel) + tmsRelTrans : {0 V : sig.T -> Type} -> {0 rel : (t : sig.T) -> Rel (V t)} + -> (trans : (t : sig.T) -> (x, y, z : V t) -> rel t x y -> rel t y z -> rel t x z) -> {ts : List sig.T} -> {tms, tms', tms'' : Term sig V ^ ts} -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms'' -> Pointwise ((~=~) rel) tms tms'' - tmRelTrans trans (Done' i) (Done' j) = Done' (transitive i j) - tmRelTrans trans (Call' op ts) (Call' _ ts') = Call' op (tmsRelTrans trans ts ts') + tmRelTrans trans (Done i) (Done j) = Done (trans _ _ _ _ i j) + tmRelTrans trans (Call op ts) (Call _ ts') = Call op (tmsRelTrans trans ts ts') tmsRelTrans trans [] [] = [] tmsRelTrans trans (t :: ts) (t' :: ts') = tmRelTrans trans t t' :: tmsRelTrans trans ts ts' - export - tmRelEq : {0 V : sig.T -> Type} -> {0 rel : IRel V} -> IEquivalence V rel - -> IEquivalence _ ((~=~) {sig = sig} {v = V} rel) - tmRelEq eq t = MkEquivalence - (MkReflexive $ tmRelRefl (\t => (eq t).refl) _) - (MkSymmetric $ tmRelSym (\t => (eq t).sym)) - (MkTransitive $ tmRelTrans (\t => (eq t).trans)) + public export + tmRelEq : IndexedEquivalence sig.T v -> IndexedEquivalence sig.T (Term sig v) + tmRelEq eq = MkIndexedEquivalence + { relation = (~=~) eq.relation + , reflexive = \t => tmRelRefl eq.reflexive + , symmetric = \t, x, y => tmRelSym eq.symmetric + , transitive = \t, x, y, z => tmRelTrans eq.transitive + } public export Free : (0 V : sig.T -> Type) -> RawAlgebra sig Free v = MkRawAlgebra (Term sig v) Call public export -FreeIsAlgebra : (v : ISetoid sig.T) -> IsAlgebra sig (Free v.U) -FreeIsAlgebra v = MkIsAlgebra ((~=~) v.relation) (tmRelEq v.equivalence) Call' +FreeIsAlgebra : (v : IndexedSetoid sig.T) -> IsAlgebra sig (Free v.U) +FreeIsAlgebra v = MkIsAlgebra (tmRelEq v.equivalence) Call public export -FreeAlgebra : ISetoid sig.T -> Algebra sig +FreeAlgebra : IndexedSetoid sig.T -> Algebra sig FreeAlgebra v = MkAlgebra _ (FreeIsAlgebra v) public export -bindTermCong' : {a : Algebra sig} -> {env, env' : IFunc v a.raw.U} -> {0 rel : IRel v} +bindTermCong' : {a : Algebra sig} -> {env, env' : (t : sig.T) -> v t -> a.raw.U t} + -> {0 rel : (t : sig.T) -> Rel (v t)} -> (cong : (t : sig.T) -> {x, y : v t} -> rel t x y -> a.relation t (env t x) (env' t y)) - -> {t : sig.T} -> {tm, tm' : Term sig v t} -> (~=~) rel t tm tm' + -> {t : sig.T} -> {tm, tm' : Term sig v t} -> (eq : (~=~) rel t tm tm') -> a.relation t (bindTerm {a = a.raw} env tm) (bindTerm {a = a.raw} env' tm') public export -bindTermsCong' : {a : Algebra sig} -> {env, env' : IFunc v a.raw.U} -> {0 rel : IRel v} +bindTermsCong' : {a : Algebra sig} -> {env, env' : (t : sig.T) -> v t -> a.raw.U t} + -> {0 rel : (t : sig.T) -> Rel (v t)} -> (cong : (t : sig.T) -> {x, y : v t} -> rel t x y -> a.relation t (env t x) (env' t y)) - -> {ts : List sig.T} -> {tms, tms' : Term sig v ^ ts} -> Pointwise ((~=~) rel) tms tms' + -> {ts : List sig.T} -> {tms, tms' : Term sig v ^ ts} -> (eqs : Pointwise ((~=~) rel) tms tms') -> Pointwise a.relation (bindTerms {a = a.raw} env tms) (bindTerms {a = a.raw} env' tms') -bindTermCong' cong (Done' i) = cong _ i -bindTermCong' {a = a} cong (Call' op ts) = a.algebra.semCong op (bindTermsCong' cong ts) +bindTermCong' cong (Done i) = cong _ i +bindTermCong' {a = a} cong (Call op ts) = a.algebra.semCong op (bindTermsCong' cong ts) bindTermsCong' cong [] = [] bindTermsCong' cong (t :: ts) = bindTermCong' cong t :: bindTermsCong' cong ts public export -bindTermCong : {a : Algebra sig} -> (env : IFunction v a.setoid) - -> {t : sig.T} -> {tm, tm' : Term sig v.U t} -> (~=~) v.relation t tm tm' - -> a.relation t (bindTerm {a = a.raw} env.func tm) (bindTerm {a = a.raw} env.func tm') -bindTermCong env = bindTermCong' env.cong +bindTermCong : {a : Algebra sig} -> (env : v ~> a.setoid) + -> {t : sig.T} -> {tm, tm' : Term sig v.U t} -> (eq : (~=~) v.equivalence.relation t tm tm') + -> a.relation t (bindTerm {a = a.raw} env.H tm) (bindTerm {a = a.raw} env.H tm') +bindTermCong env = bindTermCong' env.homomorphic public export -bindTermsCong : {a : Algebra sig} -> (env : IFunction v a.setoid) - -> {ts : List sig.T} -> {tms, tms' : Term sig v.U ^ ts} -> Pointwise ((~=~) v.relation) tms tms' - -> Pointwise a.relation - (bindTerms {a = a.raw} env.func tms) - (bindTerms {a = a.raw} env.func tms') -bindTermsCong env = bindTermsCong' env.cong +bindTermsCong : {a : Algebra sig} -> (env : v ~> a.setoid) + -> {ts : List sig.T} -> {tms, tms' : Term sig v.U ^ ts} + -> (eqs : Pointwise ((~=~) v.equivalence.relation) tms tms') + -> Pointwise a.relation (bindTerms {a = a.raw} env.H tms) (bindTerms {a = a.raw} env.H tms') +bindTermsCong env = bindTermsCong' env.homomorphic public export -bindHomo : {a : Algebra sig} -> (env : IFunction v a.setoid) -> FreeAlgebra v ~> a +bindHomo : {a : Algebra sig} -> (env : v ~> a.setoid) -> FreeAlgebra v ~> a bindHomo env = MkHomomorphism - { func = \_ => bindTerm {a = a.raw} env.func - , cong = \_ => bindTermCong env + { func = MkIndexedSetoidHomomorphism + { H = \_ => bindTerm {a = a.raw} env.H + , homomorphic = \_, _, _ => bindTermCong env + } , semHomo = \op, tms => a.algebra.semCong op $ - map (\t => (a.algebra.equivalence t).equalImpliesEq) $ - equalImpliesPwEq $ - bindTermsIsMap {a = a.raw} env.func tms + reflect (index (pwSetoid a.setoid) _) $ + bindTermsIsMap {a = a.raw} env.H tms } public export -bindUnique' : {v : ISetoid sig.T} -> {a : Algebra sig} +bindUnique' : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (f, g : FreeAlgebra v ~> a) - -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (g.func t (Done i))) + -> (cong : {t : sig.T} -> (i : v.U t) + -> a.relation t (f.func.H t (Done i)) (g.func.H t (Done i))) -> {t : sig.T} -> (tm : Term sig v.U t) - -> a.relation t (f.func t tm) (g.func t tm) + -> a.relation t (f.func.H t tm) (g.func.H t tm) public export -bindsUnique' : {v : ISetoid sig.T} -> {a : Algebra sig} +bindsUnique' : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (f, g : FreeAlgebra v ~> a) - -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (g.func t (Done i))) + -> (cong : {t : sig.T} -> (i : v.U t) + -> a.relation t (f.func.H t (Done i)) (g.func.H t (Done i))) -> {ts : List sig.T} -> (tms : Term sig v.U ^ ts) - -> Pointwise a.relation (map f.func tms) (map g.func tms) + -> Pointwise a.relation (map f.func.H tms) (map g.func.H tms) bindUnique' f g cong (Done i) = cong i -bindUnique' f g cong (Call op ts) = CalcWith (a.setoid.index _) $ - |~ f.func _ (Call op ts) - ~~ a.raw.sem op (map f.func ts) ...( f.semHomo op ts ) - ~~ a.raw.sem op (map g.func ts) ...( a.algebra.semCong op $ bindsUnique' f g cong ts ) - ~~ g.func _ (Call op ts) ..<( g.semHomo op ts ) +bindUnique' f g cong (Call op ts) = CalcWith (index a.setoid _) $ + |~ f.func.H _ (Call op ts) + ~~ a.raw.sem op (map f.func.H ts) ...( f.semHomo op ts ) + ~~ a.raw.sem op (map g.func.H ts) ...( a.algebra.semCong op $ bindsUnique' f g cong ts ) + ~~ g.func.H _ (Call op ts) ..<( g.semHomo op ts ) bindsUnique' f g cong [] = [] bindsUnique' f g cong (t :: ts) = bindUnique' f g cong t :: bindsUnique' f g cong ts public export -bindUnique : {v : ISetoid sig.T} -> {a : Algebra sig} -> (env : IFunction v a.setoid) +bindUnique : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (env : v ~> a.setoid) -> (f : FreeAlgebra v ~> a) - -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (env.func t i)) + -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func.H t (Done i)) (env.H t i)) -> {t : sig.T} -> (tm : Term sig v.U t) - -> a.relation t (f.func t tm) (bindTerm {a = a.raw} env.func tm) + -> a.relation t (f.func.H t tm) (bindTerm {a = a.raw} env.H tm) bindUnique env f = bindUnique' f (bindHomo env) public export -bindsUnique : {v : ISetoid sig.T} -> {a : Algebra sig} -> (env : IFunction v a.setoid) +bindsUnique : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (env : v ~> a.setoid) -> (f : FreeAlgebra v ~> a) - -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (env.func t i)) + -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func.H t (Done i)) (env.H t i)) -> {ts : List sig.T} -> (tms : Term sig v.U ^ ts) - -> Pointwise a.relation (map f.func tms) (bindTerms {a = a.raw} env.func tms) -bindsUnique env f cong ts = CalcWith (pwSetoid a.setoid _) $ - |~ map f.func ts - ~~ map (\_ => bindTerm {a = a.raw} env.func) ts ...( bindsUnique' f (bindHomo env) cong ts ) - ~~ bindTerms {a = a.raw} env.func ts .=<( bindTermsIsMap {a = a.raw} env.func ts ) + -> Pointwise a.relation (map f.func.H tms) (bindTerms {a = a.raw} env.H tms) +bindsUnique env f cong ts = CalcWith (index (pwSetoid a.setoid) _) $ + |~ map f.func.H ts + ~~ map (\_ => bindTerm {a = a.raw} env.H) ts ...( bindsUnique' f (bindHomo env) cong ts ) + ~~ bindTerms {a = a.raw} env.H ts .=<( bindTermsIsMap {a = a.raw} env.H ts ) |