summaryrefslogtreecommitdiff
path: root/src/Syntax/PreorderReasoning/Setoid.idr
diff options
context:
space:
mode:
Diffstat (limited to 'src/Syntax/PreorderReasoning/Setoid.idr')
-rw-r--r--src/Syntax/PreorderReasoning/Setoid.idr55
1 files changed, 0 insertions, 55 deletions
diff --git a/src/Syntax/PreorderReasoning/Setoid.idr b/src/Syntax/PreorderReasoning/Setoid.idr
deleted file mode 100644
index f0480b2..0000000
--- a/src/Syntax/PreorderReasoning/Setoid.idr
+++ /dev/null
@@ -1,55 +0,0 @@
-{- Taken from https://github.com/ohad/idris-setoid -}
-
-||| Like Syntax.PreorderReasoning.Generic, but optimised for setoids
-module Syntax.PreorderReasoning.Setoid
-
-import public Data.Setoid
-
-infixl 0 ~~
-prefix 1 |~
-infix 1 ...,..<,..>,.=.,.=<,.=>
-
-public export
-data Step : (a : Setoid) -> (lhs,rhs : U a) -> Type where
- (...) : {0 a : Setoid} -> (0 y : U a) -> {0 x : U a} ->
- a.relation x y -> Step a x y
-
-public export
-data FastDerivation : (a : Setoid) -> (x, y : U a) -> Type where
- (|~) : {0 a : Setoid} -> (x : U a) -> FastDerivation a x x
- (~~) : {0 a : Setoid} -> {x, y : U a}
- -> FastDerivation a x y -> {z : U a} -> (step : Step a y z)
- -> FastDerivation a x z
-
-public export
-CalcWith : (a : Setoid) -> {0 x : U a} -> {0 y : U a} -> FastDerivation a x y ->
- a.relation x y
-CalcWith a (|~ x) = a.equivalence.reflexive
-CalcWith a ((~~) der (z ... step)) = a.equivalence.transitive
- (CalcWith a der) step
-
--- Smart constructors
-public export
-(..<) : {a : Setoid} -> (y : U a) -> {x : U a} ->
- a.relation y x -> Step a x y
-(y ..<(prf)) {x} = (y ...(a.equivalence.symmetric prf))
-
-public export
-(..>) : {0 a : Setoid} -> (0 y : U a) -> {0 x : U a} ->
- a.relation x y -> Step a x y
-(..>) = (...)
-
-public export
-(.=.) : {a : Setoid} -> (y : U a) -> {x : U a} ->
- x === y -> Step a x y
-(y .=.(Refl)) = (y ...(a.equivalence.reflexive))
-
-public export
-(.=>) : {a : Setoid} -> (y : U a) -> {x : U a} ->
- x === y -> Step a x y
-(.=>) = (.=.)
-
-public export
-(.=<) : {a : Setoid} -> (y : U a) -> {x : U a} ->
- y === x -> Step a x y
-(y .=<(Refl)) = (y ...(a.equivalence.reflexive))