module Soat.FirstOrder.Term import Data.Setoid.Indexed import Soat.Data.Product import Soat.FirstOrder.Algebra import Soat.FirstOrder.Signature import Syntax.PreorderReasoning.Setoid %default total public export data Term : (0 sig : Signature) -> (0 _ : sig.T -> Type) -> sig.T -> Type where Done : (i : v t) -> Term sig v t Call : (op : Op sig t) -> (ts : Term sig v ^ op.arity) -> Term sig v t public export bindTerm : {auto a : RawAlgebra sig} -> (f : (t : sig.T) -> v t -> a.U t) -> {t : _} -> Term sig v t -> a.U t public export bindTerms : {auto a : RawAlgebra sig} -> ((t : sig.T) -> v t -> a.U t) -> {ts : _} -> Term sig v ^ ts -> a.U ^ ts bindTerm env (Done i) = env _ i bindTerm {a = a} env (Call op ts) = a.sem op (bindTerms env ts) bindTerms env [] = [] bindTerms env (t :: ts) = bindTerm env t :: bindTerms env ts public export bindTermsIsMap : {auto a : RawAlgebra sig} -> (env : (t : sig.T) -> v t -> a.U t) -> {ts : _} -> (tms : Term sig v ^ ts) -> bindTerms (\tm => env tm) tms = map (\t => bindTerm (\tm => env tm)) tms bindTermsIsMap env [] = Refl bindTermsIsMap env (t :: ts) = cong ((::) (bindTerm env t)) (bindTermsIsMap env ts) -- FIXME: these names shouldn't be public. Indication of bad API design namespace Rel public export data (~=~) : forall v . (0 r : (t : _) -> Rel (v t)) -> (t : _) -> Rel (Term sig v t) where Done' : {0 v : sig.T -> Type} -> {0 r : (t : _) -> Rel (v t)} -> {t : sig.T} -> {i, j : v t} -> r t i j -> (~=~) {sig} {v} r t (Done i) (Done j) Call' : {0 v : sig.T -> Type} -> {0 r : (t : _) -> Rel (v t)} -> {t : sig.T} -> (op : Op sig t) -> {tms, tms' : Term sig v ^ op.arity} -> Pointwise ((~=~) {sig} {v} r) tms tms' -> (~=~) {sig} {v} r t (Call op tms) (Call op tms') public export tmRelEqualIsEqual : (~=~) (\_ => Equal) t tm tm' -> tm = tm' public export tmsRelEqualIsEqual : Pointwise ((~=~) (\_ => Equal)) tms tms' -> tms = tms' tmRelEqualIsEqual (Done' eq) = cong Done eq tmRelEqualIsEqual (Call' op eqs) = cong (Call op) $ tmsRelEqualIsEqual eqs tmsRelEqualIsEqual [] = Refl tmsRelEqualIsEqual (eq :: eqs) = cong2 (::) (tmRelEqualIsEqual eq) (tmsRelEqualIsEqual eqs) public export tmRelRefl : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> (x : V t) -> rel t x x) -> {t : sig.T} -> (tm : Term sig V t) -> (~=~) rel t tm tm public export tmsRelRefl : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> (x : V t) -> rel t x x) -> {ts : List sig.T} -> (tms : Term sig V ^ ts) -> Pointwise ((~=~) rel) tms tms tmRelRefl refl (Done i) = Done' $ refl _ i tmRelRefl refl (Call op ts) = Call' op (tmsRelRefl refl ts) tmsRelRefl refl [] = [] tmsRelRefl refl (t :: ts) = tmRelRefl refl t :: tmsRelRefl refl ts public export tmRelReflexive : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> (x : V t) -> rel t x x) -> {t : sig.T} -> {tm, tm' : Term sig V t} -> tm = tm' -> (~=~) rel t tm tm' tmRelReflexive refl Refl = tmRelRefl refl _ public export tmsRelReflexive : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> (x : V t) -> rel t x x) -> {ts : List sig.T} -> {tms, tms' : Term sig V ^ ts} -> tms = tms' -> Pointwise ((~=~) rel) tms tms' tmsRelReflexive refl Refl = tmsRelRefl refl _ public export tmRelSym : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> Symmetric (V t) (rel t)) -> {t : sig.T} -> {tm, tm' : Term sig V t} -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm public export tmsRelSym : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> Symmetric (V t) (rel t)) -> {ts : List sig.T} -> {tms, tms' : Term sig V ^ ts} -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms tmRelSym sym (Done' i) = Done' (symmetric i) tmRelSym sym (Call' op ts) = Call' op (tmsRelSym sym ts) tmsRelSym sym [] = [] tmsRelSym sym (t :: ts) = tmRelSym sym t :: tmsRelSym sym ts public export tmRelTrans : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> Transitive (V t) (rel t)) -> {t : sig.T} -> {tm, tm', tm'' : Term sig V t} -> (~=~) rel t tm tm' -> (~=~) rel t tm' tm'' -> (~=~) rel t tm tm'' public export tmsRelTrans : {0 V : sig.T -> Type} -> {0 rel : (t : _) -> Rel (V t)} -> ((t : sig.T) -> Transitive (V t) (rel t)) -> {ts : List sig.T} -> {tms, tms', tms'' : Term sig V ^ ts} -> Pointwise ((~=~) rel) tms tms' -> Pointwise ((~=~) rel) tms' tms'' -> Pointwise ((~=~) rel) tms tms'' tmRelTrans trans (Done' i) (Done' j) = Done' (transitive i j) tmRelTrans trans (Call' op ts) (Call' _ ts') = Call' op (tmsRelTrans trans ts ts') tmsRelTrans trans [] [] = [] tmsRelTrans trans (t :: ts) (t' :: ts') = tmRelTrans trans t t' :: tmsRelTrans trans ts ts' public export tmRelEq : IndexedEquivalence sig.T v -> IndexedEquivalence sig.T (Term sig v) tmRelEq eq = MkIndexedEquivalence { relation = (~=~) {sig, v} eq.relation , reflexive = \t => tmRelRefl eq.reflexive , symmetric = \t, _, _ => tmRelSym (\t => MkSymmetric $ eq.symmetric t _ _) , transitive = \t, _, _, _ => tmRelTrans (\t => MkTransitive $ eq.transitive t _ _ _) } public export Free : (0 V : sig.T -> Type) -> RawAlgebra sig Free v = MakeRawAlgebra (Term sig v) Call public export FreeIsAlgebra : (v : IndexedSetoid sig.T) -> IsAlgebra sig (Free v.U) FreeIsAlgebra v = MkIsAlgebra (tmRelEq v.equivalence) Call' public export FreeAlgebra : IndexedSetoid sig.T -> Algebra sig FreeAlgebra v = MkAlgebra _ (FreeIsAlgebra v) public export bindTermCong' : {a : Algebra sig} -> {env, env' : (t : sig.T) -> v t -> a.raw.U t} -> {0 rel : (t : _) -> Rel (v t)} -> (cong : (t : sig.T) -> {x, y : v t} -> rel t x y -> a.relation t (env t x) (env' t y)) -> {t : sig.T} -> {tm, tm' : Term sig v t} -> (~=~) rel t tm tm' -> a.relation t (bindTerm {a = a.raw} env tm) (bindTerm {a = a.raw} env' tm') public export bindTermsCong' : {a : Algebra sig} -> {env, env' : (t : sig.T) -> v t -> a.raw.U t} -> {0 rel : (t : _) -> Rel (v t)} -> (cong : (t : sig.T) -> {x, y : v t} -> rel t x y -> a.relation t (env t x) (env' t y)) -> {ts : List sig.T} -> {tms, tms' : Term sig v ^ ts} -> Pointwise ((~=~) rel) tms tms' -> Pointwise a.relation (bindTerms {a = a.raw} env tms) (bindTerms {a = a.raw} env' tms') bindTermCong' cong (Done' i) = cong _ i bindTermCong' {a = a} cong (Call' op ts) = a.algebra.semCong op (bindTermsCong' cong ts) bindTermsCong' cong [] = [] bindTermsCong' cong (t :: ts) = bindTermCong' cong t :: bindTermsCong' cong ts public export bindTermCong : {a : Algebra sig} -> (env : v ~> a.setoid) -> {t : sig.T} -> {tm, tm' : Term sig v.U t} -> (~=~) v.equivalence.relation t tm tm' -> a.relation t (bindTerm {a = a.raw} env.H tm) (bindTerm {a = a.raw} env.H tm') bindTermCong env = bindTermCong' env.homomorphic public export bindTermsCong : {a : Algebra sig} -> (env : v ~> a.setoid) -> {ts : List sig.T} -> {tms, tms' : Term sig v.U ^ ts} -> Pointwise ((~=~) v.equivalence.relation) tms tms' -> Pointwise a.relation (bindTerms {a = a.raw} env.H tms) (bindTerms {a = a.raw} env.H tms') bindTermsCong env = bindTermsCong' env.homomorphic public export bindIsHomo : (a : Algebra sig) -> (env : v ~> a.setoid) -> IsHomomorphism (FreeAlgebra v) a (\t => bindTerm {a = a.raw} env.H) bindIsHomo a env = MkIsHomomorphism (\t, eq => bindTermCong env eq) (\op, tms => a.algebra.semCong op $ map (\t => reflect $ index a.setoid t) $ equalImpliesPwEq $ bindTermsIsMap {a = a.raw} env.H tms) public export bindHomo : {a : Algebra sig} -> (env : v ~> a.setoid) -> Homomorphism (FreeAlgebra v) a bindHomo env = MkHomomorphism _ (bindIsHomo _ env) public export bindUnique' : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (f, g : Homomorphism (FreeAlgebra v) a) -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (g.func t (Done i))) -> {t : sig.T} -> (tm : Term sig v.U t) -> a.relation t (f.func t tm) (g.func t tm) public export bindsUnique' : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (f, g : Homomorphism (FreeAlgebra v) a) -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (g.func t (Done i))) -> {ts : List sig.T} -> (tms : Term sig v.U ^ ts) -> Pointwise a.relation (map f.func tms) (map g.func tms) bindUnique' f g cong (Done i) = cong i bindUnique' f g cong (Call op ts) = CalcWith (index a.setoid _) $ |~ f.func _ (Call op ts) ~~ a.raw.sem op (map f.func ts) ...( f.homo.semHomo op ts ) ~~ a.raw.sem op (map g.func ts) ...( a.algebra.semCong op $ bindsUnique' f g cong ts ) ~~ g.func _ (Call op ts) ..<( g.homo.semHomo op ts ) bindsUnique' f g cong [] = [] bindsUnique' f g cong (t :: ts) = bindUnique' f g cong t :: bindsUnique' f g cong ts public export bindUnique : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (env : v ~> a.setoid) -> (f : Homomorphism (FreeAlgebra v) a) -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (env.H t i)) -> {t : sig.T} -> (tm : Term sig v.U t) -> a.relation t (f.func t tm) (bindTerm {a = a.raw} env.H tm) bindUnique env f = bindUnique' f (bindHomo env) public export bindsUnique : {v : IndexedSetoid sig.T} -> {a : Algebra sig} -> (env : v ~> a.setoid) -> (f : Homomorphism (FreeAlgebra v) a) -> (cong : {t : sig.T} -> (i : v.U t) -> a.relation t (f.func t (Done i)) (env.H t i)) -> {ts : List sig.T} -> (tms : Term sig v.U ^ ts) -> Pointwise a.relation (map f.func tms) (bindTerms {a = a.raw} env.H tms) bindsUnique env f cong ts = CalcWith (pwSetoid a.setoid _) $ |~ map f.func ts ~~ map (\_ => bindTerm {a = a.raw} env.H) ts ...( bindsUnique' f (bindHomo env) cong ts ) ~~ bindTerms {a = a.raw} env.H ts .=<( bindTermsIsMap {a = a.raw} env.H ts )