module Soat.SecondOrder.Algebra import Data.List.Elem import Soat.Data.Product import Soat.Data.Sublist import Soat.Relation import Soat.SecondOrder.Signature public export extend : (U : a -> List a -> Type) -> (ctx : List a) -> Pair (List a) a -> Type extend x ctx ty = x (snd ty) (fst ty ++ ctx) public export extendRel : {U : a -> List a -> Type} -> (rel : IRel (uncurry U)) -> (ctx : List a) -> IRel (extend U ctx) extendRel rel ctx ty = rel (snd ty, fst ty ++ ctx) public export algebraOver : (sig : Signature) -> (U : sig.T -> List sig.T -> Type) -> Type algebraOver sig x = (ctx : List sig.T) -> {t : sig.T} -> (op : Op sig t) -> extend x ctx ^ op.arity -> x t ctx public export record RawAlgebra (0 sig : Signature) where constructor MakeRawAlgebra 0 U : (t : sig.T) -> (ctx : List sig.T) -> Type rename : (t : sig.T) -> forall ctx, ctx' . (f : ctx `Sublist` ctx') -> U t ctx -> U t ctx' sem : sig `algebraOver` U var : forall t, ctx . (i : Elem t ctx) -> U t ctx subst : (t : sig.T) -> (ctx : List sig.T) -> forall ctx' . U t ctx' -> flip U ctx ^ ctx' -> U t ctx public export record IsAlgebra (0 sig : Signature) (0 a : RawAlgebra sig) (0 rel : IRel (uncurry a.U)) where constructor MkIsAlgebra equivalence : IEquivalence (uncurry a.U) rel -- Congruences renameCong : (t : sig.T) -> forall ctx, ctx' . (f : ctx `Sublist` ctx') -> {tm, tm' : a.U t ctx} -> rel (t, ctx) tm tm' -> rel (t, ctx') (a.rename t f tm) (a.rename t f tm') semCong : (ctx : List sig.T) -> {t : sig.T} -> (op : Op sig t) -> {tms, tms' : extend a.U ctx ^ op.arity} -> Pointwise (extendRel {U = a.U} rel ctx) tms tms' -> rel (t, ctx) (a.sem ctx op tms) (a.sem ctx op tms') substCong : (t : sig.T) -> (ctx : List sig.T) -> forall ctx' . {tm, tm' : a.U t ctx'} -> rel (t, ctx') tm tm' -> {tms, tms' : flip a.U ctx ^ ctx'} -> Pointwise (\t => rel (t, ctx)) tms tms' -> rel (t, ctx) (a.subst t ctx tm tms) (a.subst t ctx tm' tms') -- rename is functorial renameId : (t : sig.T) -> (ctx : List sig.T) -> (tm : a.U t ctx) -> rel (t, ctx) (a.rename t {ctx = ctx} Relation.reflexive tm) tm renameComp : (t : sig.T) -> forall ctx, ctx', ctx'' . (f : ctx' `Sublist` ctx'') -> (g : ctx `Sublist` ctx') -> (tm : a.U t ctx) -> rel (t, ctx'') (a.rename t (transitive g f) tm) (a.rename t f $ a.rename t g tm) -- sem are natural transformation semNat : forall ctx, ctx' . (f : ctx `Sublist` ctx') -> {t : sig.T} -> (op : Op sig t) -> (tms : extend a.U ctx ^ op.arity) -> rel (t, ctx') (a.rename t f $ a.sem ctx op tms) (a.sem ctx' op $ map (\ty => a.rename (snd ty) (Relation.reflexive {x = fst ty} ++ f)) $ tms) -- var is natural transformation varNat : forall t, ctx, ctx' . (f : ctx `Sublist` ctx') -> (i : Elem t ctx) -> rel (t, ctx') (a.rename t f $ a.var i) (a.var $ curry f i) -- subst is natural transformation substNat : (t : sig.T) -> forall ctx, ctx' . (f : ctx `Sublist` ctx') -> forall ctx'' . (tm : a.U t ctx'') -> (tms : flip a.U ctx ^ ctx'') -> rel (t, ctx') (a.rename t f $ a.subst t ctx tm tms) (a.subst t ctx' tm $ map (\t => a.rename t f) tms) -- subst is extranatural transformation substExnat : (t : sig.T) -> (ctx : List sig.T) -> forall ctx', ctx'' . (f : ctx' `Sublist` ctx'') -> (tm : a.U t ctx') -> (tms : flip a.U ctx ^ ctx'') -> rel (t, ctx) (a.subst t ctx (a.rename t f tm) tms) (a.subst t ctx tm (shuffle f tms)) -- var, subst is a monoid substComm : (t : sig.T) -> (ctx : List sig.T) -> forall ctx', ctx'' . (tm : a.U t ctx'') -> (tms : flip a.U ctx' ^ ctx'') -> (tms' : flip a.U ctx ^ ctx') -> rel (t, ctx) (a.subst t ctx (a.subst t ctx' tm tms) tms') (a.subst t ctx tm $ map (\t, tm => a.subst t ctx tm tms') tms) substVarL : forall t . (ctx : List sig.T) -> forall ctx' . (i : Elem t ctx') -> (tms : flip a.U ctx ^ ctx') -> rel (t, ctx) (a.subst t ctx (a.var i) tms) (index tms i) substVarR : (t : sig.T) -> (ctx : List sig.T) -> (tm : a.U t ctx) -> rel (t, ctx) (a.subst t ctx {ctx' = ctx} tm $ tabulate a.var) tm -- sem, var and subst are compatible substCompat : (ctx : List sig.T) -> {t : sig.T} -> (op : Op sig t) -> forall ctx' . (tms : extend a.U ctx' ^ op.arity) -> (tms' : flip a.U ctx ^ ctx') -> rel (t, ctx) (a.subst t ctx (a.sem ctx' op tms) tms') (a.sem ctx op $ map (\ty, tm => a.subst (snd ty) (fst ty ++ ctx) tm (tabulate {is = fst ty} (a.var . Sublist.elemJoinL {ys = ctx}) ++ map (\t => a.rename t ([] {ys = fst ty} ++ Relation.reflexive {x = ctx})) tms')) $ tms) public export record Algebra (0 sig : Signature) where constructor MkAlgebra raw : RawAlgebra sig 0 relation : IRel (uncurry raw.U) algebra : IsAlgebra sig raw relation public export (.setoid) : Algebra sig -> ISetoid (Pair sig.T (List sig.T)) (.setoid) a = MkISetoid (uncurry a.raw.U) a.relation a.algebra.equivalence public export record IsHomomorphism {0 sig : Signature} (a, b : Algebra sig) (f : (t : sig.T) -> (ctx : List sig.T) -> a.raw.U t ctx -> b.raw.U t ctx) where constructor MkIsHomomorphism cong : (t : sig.T) -> (ctx : List sig.T) -> {tm, tm' : a.raw.U t ctx} -> a.relation (t, ctx) tm tm' -> b.relation (t, ctx) (f t ctx tm) (f t ctx tm') renameHomo : (t : sig.T) -> forall ctx, ctx' . (g : ctx `Sublist` ctx') -> (tm : a.raw.U t ctx) -> b.relation (t, ctx') (f t ctx' $ a.raw.rename t g tm) (b.raw.rename t g $ f t ctx tm) semHomo : (ctx : List sig.T) -> {t : sig.T} -> (op : Op sig t) -> (tms : extend a.raw.U ctx ^ op.arity) -> b.relation (t, ctx) (f t ctx $ a.raw.sem ctx op tms) (b.raw.sem ctx op $ map (\ty => f (snd ty) (fst ty ++ ctx)) tms) varHomo : forall t, ctx . (i : Elem t ctx) -> b.relation (t, ctx) (f t ctx $ a.raw.var i) (b.raw.var i) substHomo : (t : sig.T) -> (ctx : List sig.T) -> forall ctx' . (tm : a.raw.U t ctx') -> (tms : flip a.raw.U ctx ^ ctx') -> b.relation (t, ctx) (f t ctx $ a.raw.subst t ctx tm tms) (b.raw.subst t ctx (f t ctx' tm) $ map (\t => f t ctx) tms) public export record Homomorphism {0 sig : Signature} (a, b : Algebra sig) where constructor MkHomomorphism func : (t : sig.T) -> (ctx : List sig.T) -> a.raw.U t ctx -> b.raw.U t ctx homo : IsHomomorphism a b func