module Soat.SecondOrder.Algebra.Lift import Data.List.Elem import Data.List.Sublist import Data.Product import Data.Setoid.Indexed import Data.Setoid.Product import Soat.FirstOrder.Algebra import Soat.FirstOrder.Term import Soat.SecondOrder.Algebra import Soat.SecondOrder.Signature.Lift import Syntax.PreorderReasoning.Setoid %default total %ambiguity_depth 4 public export project : SecondOrder.Algebra.RawAlgebra (lift sig) -> (ctx : List sig.T) -> FirstOrder.Algebra.RawAlgebra sig project a ctx = MkRawAlgebra (\t => a.U t ctx) (\op => a.sem ctx (MkOp (Op op.op)) . wrap (MkPair [])) public export projectAlgebra : (0 sig : _) -> Algebra (lift sig) -> (ctx : List sig.T) -> Algebra sig projectAlgebra sig a ctx = MkAlgebra { raw = project a.raw ctx , algebra = MkIsAlgebra { equivalence = (reindex (flip MkPair ctx) a.setoid).equivalence , semCong = \op => a.algebra.semCong ctx (MkOp (Op op.op)) . wrapIntro } } public export projectHomo : {a, b : SecondOrder.Algebra.Algebra (lift sig)} -> a ~> b -> (ctx : _) -> projectAlgebra sig a ctx ~> projectAlgebra sig b ctx projectHomo f ctx = MkHomomorphism { func = MkIndexedSetoidHomomorphism { H = \t => f.func.H (t, ctx) , homomorphic = \t => f.func.homomorphic (t, ctx) } , semHomo = \op, tms => CalcWith (index b.setoid _) $ |~ f.func.H (_, ctx) (a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ b.raw.sem ctx (MkOp (Op op.op)) (map (\ty => f.func.H (snd ty, fst ty ++ ctx)) (wrap (MkPair []) tms)) ...(f.semHomo ctx (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ b.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => f.func.H (t, ctx)) tms)) .=.(cong (b.raw.sem ctx (MkOp (Op op.op))) $ mapWrap (MkPair []) {f = \ty => f.func.H (snd ty, fst ty ++ ctx)} tms) } public export (.renameHomo) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> {ctx, ctx' : _} -> (f : ctx `Sublist` ctx') -> projectAlgebra sig a ctx ~> projectAlgebra sig a ctx' (.renameHomo) a f = MkHomomorphism { func = MkIndexedSetoidHomomorphism { H = \t => a.raw.rename t f , homomorphic = \t, _, _ => a.algebra.renameCong t f } , semHomo = \op, tms => CalcWith (index a.setoid _) $ |~ a.raw.rename _ f (a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ a.raw.sem _ (MkOp (Op op.op)) (map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms)) ...(a.algebra.semNat f (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => a.raw.rename t f) tms)) ...(a.algebra.semCong _ (MkOp (Op op.op)) $ CalcWith (index (pwSetoid (reindex (\ty => (snd ty, fst ty ++ _)) a.setoid)) _) $ |~ map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms) ~~ wrap (MkPair []) (map (\t => a.raw.rename t (reflexive {x = []} ++ f)) tms) .=.(mapWrap (MkPair []) tms) ~~ wrap (MkPair []) (map (\t => a.raw.rename t f) tms) ...(wrapIntro $ mapIntro'' (\t, tm, tm', eq => CalcWith (index a.setoid (t, _)) $ |~ a.raw.rename t (reflexive {x = []} ++ f) tm ~~ a.raw.rename t f tm .=.(cong (\f => a.raw.rename t f tm) $ uncurryCurry f) ~~ a.raw.rename t f tm' ...(a.algebra.renameCong t f eq)) $ (pwSetoid (a.setoidAt ctx)).equivalence.reflexive _ tms)) } public export (.substHomo1) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> (ctx : List sig.T) -> {ctx' : List sig.T} -> (tms : (\t => a.raw.U t ctx) ^ ctx') -> projectAlgebra sig a ctx' ~> projectAlgebra sig a ctx (.substHomo1) a ctx tms = MkHomomorphism { func = MkIndexedSetoidHomomorphism { H = \t, tm => a.raw.subst t ctx tm tms , homomorphic = \t, _, _, eq => a.algebra.substCong t ctx eq $ (pwSetoid (a.setoidAt _)).equivalence.reflexive _ tms } , semHomo = \op, tms' => CalcWith (index a.setoid _) $ |~ a.raw.subst _ ctx (a.raw.sem ctx' (MkOp (Op op.op)) (wrap (MkPair []) tms')) tms ~~ a.raw.sem ctx (MkOp (Op op.op)) (map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms')) ...(a.algebra.substCompat ctx (MkOp (Op op.op)) (wrap (MkPair []) tms') tms) ~~ a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms')) ...(a.algebra.semCong ctx (MkOp (Op op.op)) $ CalcWith (index (pwSetoid (reindex (\ty => (snd ty, fst ty ++ ctx)) a.setoid)) _) $ |~ map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms') ~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm (map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms)) tms') .=.(mapWrap (MkPair []) tms') ~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms') ...(wrapIntro $ mapIntro' (\t, eq => a.algebra.substCong t ctx eq $ CalcWith (index (pwSetoid (a.setoidAt _)) _) $ |~ map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms ~~ map (\t => id) tms ...(mapIntro'' (\t, tm, tm', eq => CalcWith (index a.setoid (t, ctx)) $ |~ a.raw.rename t ([] {ys = []} ++ reflexive) tm ~~ a.raw.rename t reflexive tm .=.(cong (\f => a.raw.rename t f tm) $ uncurryCurry reflexive) ~~ tm ...(a.algebra.renameId t ctx tm) ~~ tm' ...(eq)) $ (pwSetoid (a.setoidAt _)).equivalence.reflexive _ _) ~~ tms .=.(mapId tms)) $ (pwSetoid (a.setoidAt _)).equivalence.reflexive _ _)) } -- renameBodyFunc : (f : ctx `Sublist` ctx') -- -> irrelevantCast (flip Elem ctx) ~> -- (FreeAlgebra {sig = sig} (irrelevantCast (flip Elem ctx'))).setoid -- renameBodyFunc f = mate (\_ => Done . curry f) -- indexFunc : {ctx : List sig.T} -> (tms : Term sig (flip Elem ctx) ^ ts) -- -> irrelevantCast (flip Elem ts) ~> -- (FreeAlgebra {sig = sig} (irrelevantCast (flip Elem ctx))).setoid -- indexFunc tms = mate (\_ => index tms) freeAlg : List sig.T -> FirstOrder.Algebra.Algebra sig freeAlg ctx = FreeAlgebra (irrelevantCast (flip Elem ctx)) public export Initial : (0 sig : _) -> SecondOrder.Algebra.RawAlgebra (lift sig) Initial sig = MkRawAlgebra (\t, ctx => (freeAlg ctx).raw.U t) (\t, f => bindTerm {a = Free _} (\_ => Done . curry f)) (\_, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair [])) Done (\_, _, t, ts => bindTerm {a = Free _} (\_ => index ts) t) public export InitialIsAlgebra : (0 sig : _) -> SecondOrder.Algebra.IsAlgebra (lift sig) (Initial sig) InitialIsAlgebra sig = MkIsAlgebra { equivalence = MkIndexedEquivalence { relation = \(t, ctx) => (freeAlg ctx).relation t , reflexive = \(t, ctx) => (freeAlg ctx).algebra.equivalence.reflexive t , symmetric = \(t, ctx) => (freeAlg ctx).algebra.equivalence.symmetric t , transitive = \(t, ctx) => (freeAlg ctx).algebra.equivalence.transitive t } , renameCong = \t, f => bindTermCong { a = freeAlg _ , env = mate (\_ => Done . curry f) } , semCong = \_ , (MkOp (Op op)) => Call (MkOp op) . unwrapIntro , substCong = \_, _, eq, eqs => bindTermCong' { a = freeAlg _ , cong = \_, Refl => index eqs _ , eq } , renameId = \t, ctx, tm => (freeAlg _).setoid.equivalence.symmetric t _ _ $ bindUnique (mate (\_ => Done . curry reflexive)) id (\i => Done $ sym $ curryUncurry id i) tm , renameComp = \t, f, g, tm => (freeAlg _).setoid.equivalence.symmetric t _ _ $ bindUnique { a = freeAlg _ , env = mate (\_ => Done . curry (transitive g f)) , f = bindHomo (mate (\_ => Done . curry f)) . bindHomo (mate (\_ => Done . curry g)) , cong = \i => Done $ sym $ curryUncurry (curry f . curry g) i , tm } , semNat = \f, (MkOp (Op op)), tms => Call (MkOp op) $ CalcWith (index (pwSetoid (freeAlg _).setoid) _) $ |~ bindTerms {a = Free _} (\_ => Done . curry f) (unwrap (MkPair []) tms) ~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry f)) (unwrap (MkPair []) tms) .=.(bindTermsIsMap {a = Free _} _ _) ~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = []} ++ f))) (unwrap (MkPair []) tms) ..<(mapIntro' (\t => bindTermCong' {rel = \_ => Equal} {a = freeAlg _} (\_, Refl => Done $ curryUncurry (curry f) _)) $ (pwSetoid (freeAlg _).setoid).equivalence.reflexive _ (unwrap (MkPair []) tms)) ~~ unwrap (MkPair []) (map (\ty => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = fst ty} ++ f))) tms) .=.(mapUnwrap (MkPair []) tms) , varNat = \_, _ => Done Refl , substNat = \t, f, tm, tms => bindUnique { a = freeAlg _ , env = mate (\_ => index $ map (\_ => bindTerm {a = Free _} (\_ => Done . curry f)) tms) , f = bindHomo (mate (\_ => Done . curry f)) . bindHomo (mate (\_ => index tms)) , cong = \i => reflect (index (freeAlg _).setoid _) $ sym $ indexMap tms i , tm } , substExnat = \t, ctx, f, tm, tms => bindUnique { a = freeAlg _ , env = mate (\_ => index $ shuffle f tms) , f = bindHomo (mate (\_ => index tms)) . bindHomo (mate (\_ => Done . curry f)) , cong = \i => reflect (index (freeAlg _).setoid _) $ sym $ indexShuffle f i , tm } , substComm = \t, ctx, tm, tms, tms' => bindUnique { a = freeAlg _ , env = mate (\_ => index $ map (\_ => bindTerm {a = Free _} (\_ => index tms')) tms) , f = bindHomo (mate (\_ => index tms')) . bindHomo (mate (\_ => index tms)) , cong = \i => reflect (index (freeAlg _).setoid _) $ sym $ indexMap tms i , tm } , substVarL = \_, _, _ => (freeAlg _).setoid.equivalence.reflexive _ _ , substVarR = \t, ctx, tm => (freeAlg _).setoid.equivalence.symmetric t _ _ $ bindUnique { v = irrelevantCast (flip Elem ctx) , a = freeAlg ctx , env = mate (\_ => index $ tabulate (Done {sig = sig, v = flip Elem ctx})) , f = id , cong = \i => reflect (index (freeAlg ctx).setoid _) $ sym $ indexTabulate Done i , tm } , substCompat = \ctx, (MkOp (Op op)), tms, tms' => Call (MkOp op) $ CalcWith (index (pwSetoid (freeAlg _).setoid) _) $ |~ bindTerms {a = Free _} (\_ => index tms') (unwrap (MkPair []) tms) ~~ map (\_ => bindTerm {a = Free _} (\_ => index tms')) (unwrap (MkPair []) tms) .=.(bindTermsIsMap {a = Free _} _ _) ~~ map (\t => (Initial sig).extendSubst ctx tms' ([], t)) (unwrap (MkPair []) tms) ..<(mapIntro' (\t => bindTermCong' {rel = \_ => Equal} {a = freeAlg _} (\t, Refl => CalcWith (index (freeAlg _).setoid _) $ |~ index (map (\_ => bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive))) tms') _ ~~ bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive)) (index tms' _) .=.(indexMap tms' _) ~~ index tms' _ ..<(bindUnique { env = mate (\_ => Done . curry ([] {ys = []} ++ reflexive)) , f = id , cong = \i => Done $ sym $ trans (curryUncurry _ i) (curryUncurry id i) , tm = index tms' _ }))) $ (pwSetoid (freeAlg _).setoid).equivalence.reflexive _ (unwrap (MkPair []) tms)) ~~ unwrap (MkPair []) (map ((Initial sig).extendSubst ctx tms') tms) .=.(mapUnwrap (MkPair []) tms) } public export InitialAlgebra : (0 sig : _) -> SecondOrder.Algebra.Algebra (lift sig) InitialAlgebra sig = MkAlgebra (Initial sig) (InitialIsAlgebra sig) public export freeToInitialHomo : (0 sig : _) -> (ctx : List sig.T) -> FreeAlgebra (irrelevantCast (flip Elem ctx)) ~> projectAlgebra sig (InitialAlgebra sig) ctx freeToInitialHomo sig ctx = MkHomomorphism { func = MkIndexedSetoidHomomorphism { H = \_ => id , homomorphic = \_, _, _ => id } , semHomo = \(MkOp op), tms => Call (MkOp op) $ reflect (index (pwSetoid ((InitialAlgebra sig).setoidAt ctx)) _) $ sym $ trans (unwrapWrap (extend (Initial sig).U ctx) _) (mapId tms) } public export fromInitial : (a : SecondOrder.Algebra.RawAlgebra (lift sig)) -> (t : sig.T) -> (ctx : List sig.T) -> (Initial sig).U t ctx -> a.U t ctx fromInitial a t ctx = bindTerm {a = project a ctx} (\_ => a.var) public export fromInitialHomo : (a : Algebra (lift sig)) -> InitialAlgebra sig ~> a fromInitialHomo a = MkHomomorphism { func = MkIndexedSetoidHomomorphism { H = \(t, ctx) => fromInitial a.raw t ctx , homomorphic = \(t, ctx), _, _ => bindTermCong {a = projectAlgebra sig a ctx} (a.varFunc ctx) } , renameHomo = \t, f => bindUnique' {v = irrelevantCast (flip Elem _)} {a = projectAlgebra sig a _} (bindHomo (a.varFunc _) . bindHomo (mate (\_ => Done . curry f))) (a.renameHomo f . bindHomo (a.varFunc _)) (\i => a.algebra.equivalence.symmetric _ _ _ $ a.algebra.varNat f i) , semHomo = \ctx, (MkOp (Op op)), tms => a.algebra.semCong ctx (MkOp (Op op)) $ CalcWith (index (pwSetoid (reindex (\ty => (snd ty, fst ty ++ ctx)) a.setoid)) _) $ |~ wrap (MkPair []) (bindTerms {a = project a.raw ctx} (\_ => a.raw.var) (unwrap (MkPair []) tms)) ~~ wrap (MkPair []) (map (\t => fromInitial a.raw t ctx) (unwrap (MkPair []) tms)) .=.(cong (wrap _) $ bindTermsIsMap {a = project a.raw ctx} _ _) ~~ wrap (MkPair []) (unwrap (MkPair []) (map (\ty => fromInitial a.raw (snd ty) (fst ty ++ ctx)) tms)) .=.(cong (wrap _) $ mapUnwrap (MkPair []) tms) ~~ map (\ty => fromInitial a.raw (snd ty) (fst ty ++ ctx)) tms .=.(wrapUnwrap _) , varHomo = \i => a.algebra.equivalence.reflexive _ $ a.raw.var i , substHomo = \t, ctx, tm, tms => bindUnique' {v = irrelevantCast (flip Elem _)} {a = projectAlgebra sig a _} (bindHomo (a.varFunc _) . bindHomo (mate (\_ => index tms))) (a.substHomo1 ctx _ . bindHomo (a.varFunc _)) (\i => CalcWith (index a.setoid _) $ |~ bindTerm {a = project a.raw _} (\_ => a.raw.var) (index tms i) ~~ index (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) i .=<(indexMap {f = \_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)} tms i) ~~ a.raw.subst _ ctx (a.raw.var i) (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) ..<(a.algebra.substVarL ctx i _)) tm } public export fromInitialUnique : {a : SecondOrder.Algebra.Algebra (lift sig)} -> (f : InitialAlgebra sig ~> a) -> (t : sig.T) -> (ctx : List sig.T) -> (tm : Term sig (flip Elem ctx) t) -> a.relation (t, ctx) (f.func.H (t, ctx) tm) (fromInitial a.raw t ctx tm) fromInitialUnique {sig = sig} {a = a} f t ctx = bindUnique {v = irrelevantCast (flip Elem _)} {a = projectAlgebra sig a ctx} (a.varFunc ctx) (projectHomo f ctx . freeToInitialHomo sig ctx) f.varHomo