module Soat.SecondOrder.Algebra.Lift import Data.List.Elem import Data.Morphism.Indexed import Data.Setoid.Indexed import Soat.Data.Product import Soat.Data.Sublist import Soat.FirstOrder.Algebra import Soat.FirstOrder.Term import Soat.SecondOrder.Algebra import Soat.SecondOrder.Signature.Lift import Syntax.PreorderReasoning.Setoid %default total public export project : SecondOrder.Algebra.RawAlgebra (lift sig) -> (ctx : List sig.T) -> FirstOrder.Algebra.RawAlgebra sig project a ctx = MkRawAlgebra (flip a.U ctx) (\op => a.sem ctx (MkOp (Op op.op)) . wrap (MkPair [])) public export projectIsAlgebra : IsAlgebra (lift sig) a -> (ctx : List sig.T) -> IsAlgebra sig (project a ctx) projectIsAlgebra a ctx = MkIsAlgebra (\t => a.relation (t, ctx)) (\t => a.equivalence (t, ctx)) (\op => a.semCong ctx _ . wrapIntro) public export projectAlgebra : (0 sig : _) -> Algebra (lift sig) -> (ctx : List sig.T) -> Algebra sig projectAlgebra sig a ctx = MkAlgebra _ (projectIsAlgebra a.algebra ctx) public export projectHomo : {a, b : SecondOrder.Algebra.Algebra (lift sig)} -> a ~> b -> (ctx : _) -> projectAlgebra sig a ctx ~> projectAlgebra sig b ctx projectHomo f ctx = MkHomomorphism { func = \t => f.func t ctx , cong = \t => f.cong t ctx , semHomo = \op, tms => CalcWith (b.setoid.index _) $ |~ f.func _ ctx (a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ b.raw.sem ctx (MkOp (Op op.op)) (map (extendFunc f.func ctx) (wrap (MkPair []) tms)) ...(f.semHomo ctx (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ b.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => f.func t ctx) tms)) .=.(cong (b.raw.sem ctx (MkOp (Op op.op))) $ mapWrap (MkPair []) {f = extendFunc f.func ctx} tms) } public export (.renameHomo) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> {ctx, ctx' : _} -> (f : ctx `Sublist` ctx') -> projectAlgebra sig a ctx ~> projectAlgebra sig a ctx' (.renameHomo) a f = MkHomomorphism { func = \t => a.raw.rename t f , cong = \t => a.algebra.renameCong t f , semHomo = \op, tms => CalcWith (a.setoid.index _) $ |~ a.raw.rename _ f (a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ a.raw.sem _ (MkOp (Op op.op)) (map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms)) ...(a.algebra.semNat f (MkOp (Op op.op)) (wrap (MkPair []) tms)) ~~ a.raw.sem _ (MkOp (Op op.op)) (wrap (MkPair []) (map (\t => a.raw.rename t f) tms)) ...(a.algebra.semCong _ (MkOp (Op op.op)) $ CalcWith (pwSetoid (reindex (\ty => (snd ty, fst ty ++ _)) a.setoid) _) $ |~ map (\ty => a.raw.rename (snd ty) (reflexive {x = fst ty} ++ f)) (wrap (MkPair []) tms) ~~ wrap (MkPair []) (map (\t => a.raw.rename t (reflexive {x = []} ++ f)) tms) .=.(mapWrap (MkPair []) tms) ~~ wrap (MkPair []) (map (\t => a.raw.rename t f) tms) .=.(cong (wrap (MkPair [])) $ pwEqImpliesEqual $ mapIntro'' (\t, tm, _, Refl => cong (\f => a.raw.rename t f tm) $ uncurryCurry f) $ equalImpliesPwEq Refl)) } public export (.substHomo1) : (a : SecondOrder.Algebra.Algebra (lift sig)) -> (ctx : List sig.T) -> {ctx' : List sig.T} -> (tms : (\t => a.raw.U t ctx) ^ ctx') -> projectAlgebra sig a ctx' ~> projectAlgebra sig a ctx (.substHomo1) a ctx tms = MkHomomorphism { func = \t, tm => a.raw.subst t ctx tm tms , cong = \t, eq => a.algebra.substCong t ctx eq $ pwRefl (\_ => (a.algebra.equivalence _).refl) , semHomo = \op, tms' => CalcWith (a.setoid.index _) $ |~ a.raw.subst _ ctx (a.raw.sem ctx' (MkOp (Op op.op)) (wrap (MkPair []) tms')) tms ~~ a.raw.sem ctx (MkOp (Op op.op)) (map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms')) ...(a.algebra.substCompat ctx (MkOp (Op op.op)) (wrap (MkPair []) tms') tms) ~~ a.raw.sem ctx (MkOp (Op op.op)) (wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms')) ...(a.algebra.semCong ctx (MkOp (Op op.op)) $ CalcWith (pwSetoid (reindex (\ty => (snd ty, fst ty ++ ctx)) a.setoid) _) $ |~ map (a.raw.extendSubst ctx tms) (wrap (MkPair []) tms') ~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm (map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms)) tms') .=.(mapWrap (MkPair []) tms') ~~ wrap (MkPair []) (map (\t, tm => a.raw.subst t ctx tm tms) tms') ...(wrapIntro $ mapIntro' (\t, eq => a.algebra.substCong t ctx eq $ CalcWith (pwSetoid (a.setoidAt _) _) $ |~ map (\t => a.raw.rename t ([] {ys = []} ++ reflexive)) tms ~~ map (\t => a.raw.rename t reflexive) tms .=.(pwEqImpliesEqual $ mapIntro' (\t => cong2 (a.raw.rename t) $ uncurryCurry reflexive) $ equalImpliesPwEq Refl) ~~ map (\t => id) tms ...(mapIntro' (\t, Refl => a.algebra.renameId t ctx _) $ equalImpliesPwEq Refl) ~~ tms .=.(mapId tms)) $ pwRefl (\t => (a.algebra.equivalence _).refl))) } renameBodyFunc : (f : ctx `Sublist` ctx') -> IFunction (isetoid (flip Elem ctx)) (FreeAlgebra {sig = sig} (isetoid (flip Elem ctx'))).setoid renameBodyFunc f = MkIFunction (\_ => Done . curry f) (\_ => Done' . cong (curry f)) indexFunc : {ctx : List sig.T} -> (tms : Term sig (flip Elem ctx) ^ ts) -> IFunction (isetoid (flip Elem ts)) (FreeAlgebra {sig = sig} (isetoid (flip Elem ctx))).setoid indexFunc tms = MkIFunction (\_ => index tms) (\_ => ((FreeIsAlgebra (isetoid (flip Elem _))).equivalence _).equalImpliesEq . cong (index tms)) public export Initial : (0 sig : _) -> SecondOrder.Algebra.RawAlgebra (lift sig) Initial sig = MkRawAlgebra (\t, ctx => Term sig (flip Elem ctx) t) (\t, f => bindTerm {a = Free _} (renameBodyFunc f).func) (\_, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair [])) Done (\_, _, t, ts => bindTerm {a = Free _} (\_ => index ts) t) public export InitialIsAlgebra : (0 sig : _) -> SecondOrder.Algebra.IsAlgebra (lift sig) (Initial sig) InitialIsAlgebra sig = MkIsAlgebra { relation = \(t, ctx) => (~=~) {sig = sig} {v = flip Elem ctx} (\_ => Equal) t , equivalence = \(t, ctx) => tmRelEq (\_ => equiv) t , renameCong = \t, f => bindTermCong {a = FreeAlgebra (isetoid (flip Elem _))} (renameBodyFunc f) , semCong = \_ , (MkOp (Op op)) => Call' (MkOp op) . unwrapIntro , substCong = \_, _, eq, eqs => bindTermCong' {a = FreeAlgebra (isetoid (flip Elem _))} (\t, Refl => index eqs _) eq , renameId = \t, ctx, tm => tmRelSym (\_ => MkSymmetric symmetric) $ bindUnique (renameBodyFunc reflexive) id (\i => Done' $ sym $ curryUncurry id i) $ tm , renameComp = \t, f, g, tm => tmRelSym (\_ => MkSymmetric symmetric) $ bindUnique {a = FreeAlgebra (isetoid (flip Elem _))} (renameBodyFunc (transitive g f)) (bindHomo (renameBodyFunc f) . bindHomo (renameBodyFunc g)) (\i => Done' $ sym $ curryUncurry (curry f . curry g) i) $ tm , semNat = \f, (MkOp (Op op)), tms => Call' (MkOp op) $ CalcWith (pwSetoid (FreeAlgebra (isetoid (flip Elem _))).setoid _) $ |~ bindTerms {a = Free _} (\_ => Done . curry f) (unwrap (MkPair []) tms) ~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry f)) (unwrap (MkPair []) tms) .=.(bindTermsIsMap {a = Free _} _ _) ~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = []} ++ f))) (unwrap (MkPair []) tms) ..<(mapIntro' (\t => bindTermCong' {rel = \_ => Equal} {a = FreeAlgebra (isetoid (flip Elem _))} (\_, Refl => Done' $ curryUncurry (curry f) _)) $ tmsRelRefl (\_ => MkReflexive reflexive) (unwrap (MkPair []) tms)) ~~ unwrap (MkPair []) (map (\ty => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = fst ty} ++ f))) tms) .=.(mapUnwrap (MkPair []) tms) , varNat = \_, _ => Done' Refl , substNat = \t, f, tm, tms => bindUnique {a = FreeAlgebra (isetoid (flip Elem _))} (indexFunc _) (bindHomo (renameBodyFunc f) . bindHomo (indexFunc tms)) (\i => tmRelReflexive (\_ => MkReflexive reflexive) $ sym $ indexMap tms i) tm , substExnat = \t, ctx, f, tm, tms => bindUnique {a = FreeAlgebra (isetoid (flip Elem _))} (indexFunc _) (bindHomo (indexFunc tms) . bindHomo (renameBodyFunc f)) (\i => tmRelReflexive (\_ => MkReflexive reflexive) $ sym $ indexShuffle f i) tm , substComm = \t, ctx, tm, tms, tms' => bindUnique {a = FreeAlgebra (isetoid (flip Elem _))} (indexFunc _) (bindHomo (indexFunc tms') . bindHomo (indexFunc tms)) (\i => tmRelReflexive (\_ => MkReflexive reflexive) $ sym $ indexMap tms i) tm , substVarL = \_, _, _ => tmRelRefl (\_ => MkReflexive reflexive) _ , substVarR = \t, ctx, tm => tmRelSym (\_ => MkSymmetric symmetric) $ bindUnique {a = FreeAlgebra (isetoid (flip Elem _))} (indexFunc _) id (\i => tmRelReflexive (\_ => MkReflexive reflexive) $ sym $ indexTabulate Done i) tm , substCompat = \ctx, (MkOp (Op op)), tms, tms' => Call' (MkOp op) $ CalcWith (pwSetoid (FreeAlgebra (isetoid (flip Elem _))).setoid _) $ |~ bindTerms {a = Free _} (\_ => index tms') (unwrap (MkPair []) tms) ~~ map (\_ => bindTerm {a = Free _} (\_ => index tms')) (unwrap (MkPair []) tms) .=.(bindTermsIsMap {a = Free _} _ _) ~~ map (\t => (Initial sig).extendSubst ctx tms' ([], t)) (unwrap (MkPair []) tms) ..<(mapIntro' (\t => bindTermCong' {rel = \_ => Equal} {a = FreeAlgebra (isetoid (flip Elem _))} (\t, Refl => CalcWith ((FreeAlgebra (isetoid (flip Elem _))).setoid.index _) $ |~ index (map (\_ => bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive))) tms') _ ~~ bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive)) (index tms' _) .=.(indexMap tms' _) ~~ index tms' _ ..<(bindUnique (renameBodyFunc ([] {ys = []} ++ reflexive)) id (\i => Done' $ sym $ trans (curryUncurry _ i) (curryUncurry id i)) (index tms' _)))) $ tmsRelRefl (\_ => MkReflexive reflexive) $ unwrap (MkPair []) tms) ~~ unwrap (MkPair []) (map ((Initial sig).extendSubst ctx tms') tms) .=.(mapUnwrap (MkPair []) tms) } public export InitialAlgebra : (0 sig : _) -> SecondOrder.Algebra.Algebra (lift sig) InitialAlgebra sig = MkAlgebra (Initial sig) (InitialIsAlgebra sig) public export freeToInitialHomo : (0 sig : _) -> (ctx : List sig.T) -> FreeAlgebra (isetoid (flip Elem ctx)) ~> projectAlgebra sig (InitialAlgebra sig) ctx freeToInitialHomo sig ctx = MkHomomorphism { func = \_ => id , cong = \_ => id , semHomo = \(MkOp op), tms => Call' (MkOp op) $ tmsRelSym (\_ => MkSymmetric symmetric) $ tmsRelReflexive (\_ => MkReflexive reflexive) $ transitive (unwrapWrap _ _) (mapId tms) } public export fromInitial : (a : SecondOrder.Algebra.RawAlgebra (lift sig)) -> (t : sig.T) -> (ctx : List sig.T) -> (Initial sig).U t ctx -> a.U t ctx fromInitial a t ctx = bindTerm {a = project a ctx} (\_ => a.var) public export fromInitialHomo : (a : Algebra (lift sig)) -> InitialAlgebra sig ~> a fromInitialHomo a = MkHomomorphism { func = fromInitial a.raw , cong = \t , ctx => bindTermCong {a = projectAlgebra sig a ctx} (a.varFunc ctx) , renameHomo = \t, f => bindUnique' {v = isetoid (flip Elem _)} {a = projectAlgebra sig a _} (bindHomo (a.varFunc _) . bindHomo (renameBodyFunc f)) (a.renameHomo f . bindHomo (a.varFunc _)) (\i => (a.algebra.equivalence _).symmetric $ a.algebra.varNat f i) , semHomo = \ctx, (MkOp (Op op)), tms => a.algebra.semCong ctx (MkOp (Op op)) $ CalcWith (pwSetoid (reindex (\ty => (snd ty, fst ty ++ ctx)) a.setoid) _) $ |~ wrap (MkPair []) (bindTerms {a = project a.raw ctx} (\_ => a.raw.var) (unwrap (MkPair []) tms)) ~~ wrap (MkPair []) (map (\t => fromInitial a.raw t ctx) (unwrap (MkPair []) tms)) .=.(cong (wrap _) $ bindTermsIsMap {a = project a.raw ctx} _ _) ~~ wrap (MkPair []) (unwrap (MkPair []) (map (extendFunc (fromInitial a.raw) ctx) tms)) .=.(cong (wrap _) $ mapUnwrap (MkPair []) tms) ~~ map (extendFunc (fromInitial a.raw) ctx) tms .=.(wrapUnwrap _) , varHomo = \_ => (a.algebra.equivalence _).reflexive , substHomo = \t, ctx, tm, tms => bindUnique' {v = isetoid (flip Elem _)} {a = projectAlgebra sig a _} (bindHomo (a.varFunc _) . bindHomo (indexFunc tms)) (a.substHomo1 ctx _ . bindHomo (a.varFunc _)) (\i => CalcWith (a.setoid.index _) $ |~ bindTerm {a = project a.raw _} (\_ => a.raw.var) (index tms i) ~~ index (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) i .=<(indexMap {f = \_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)} tms i) ~~ a.raw.subst _ ctx (a.raw.var i) (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) ..<(a.algebra.substVarL ctx i _)) tm } public export fromInitialUnique : {a : SecondOrder.Algebra.Algebra (lift sig)} -> (f : InitialAlgebra sig ~> a) -> (t : sig.T) -> (ctx : List sig.T) -> (tm : Term sig (flip Elem ctx) t) -> a.relation (t, ctx) (f.func t ctx tm) (fromInitial a.raw t ctx tm) fromInitialUnique {sig = sig} {a = a} f t ctx = bindUnique {v = isetoid (flip Elem _)} {a = projectAlgebra sig a ctx} (a.varFunc ctx) (projectHomo f ctx . freeToInitialHomo sig ctx) f.varHomo