summaryrefslogtreecommitdiff
path: root/src/Soat/FirstOrder/Algebra.idr
blob: b9c02c55b149493b18a16e9ae16d1b49cfdfa2a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
module Soat.FirstOrder.Algebra

import Data.Morphism.Indexed
import Data.Setoid.Indexed
import public Soat.Data.Product
import Soat.FirstOrder.Signature

%default total
%hide Control.Relation.Equivalence

infix 5 ~>

public export 0
algebraOver : (sig : Signature) -> (U : sig.T -> Type) -> Type
algebraOver sig x = {t : sig.T} -> (op : Op sig t) -> x ^ op.arity -> x t

public export
record RawAlgebra (0 sig : Signature) where
  constructor MkRawAlgebra
  0 U : sig.T -> Type
  sem : sig `algebraOver` U

public export
record RawSetoidAlgebra (0 sig : Signature) where
  constructor MkRawSetoidAlgebra
  raw        : RawAlgebra sig
  0 relation : IRel raw.U

public export
record IsAlgebra (0 sig : Signature) (0 a : RawAlgebra sig) where
  constructor MkIsAlgebra
  0 relation  : IRel a.U
  equivalence : IEquivalence a.U relation
  semCong     : {t : sig.T} -> (op : Op sig t) -> {tms, tms' : a.U ^ op.arity}
    -> Pointwise relation tms tms' -> relation t (a.sem op tms) (a.sem op tms')

public export
record Algebra (0 sig : Signature) where
  constructor MkAlgebra
  raw        : RawAlgebra sig
  algebra    : IsAlgebra sig raw

public export 0
(.relation) : (0 a : Algebra sig) -> IRel a.raw.U
(.relation) a = a.algebra.relation

public export
(.setoid) : Algebra sig -> ISetoid sig.T
(.setoid) a = MkISetoid a.raw.U a.relation a.algebra.equivalence

public export
(.rawSetoid) : Algebra sig -> RawSetoidAlgebra sig
(.rawSetoid) a = MkRawSetoidAlgebra a.raw a.relation

public export
record IsHomomorphism
  {0 sig : Signature} (a, b : Algebra sig)
  (f : (t : sig.T) -> a.raw.U t -> b.raw.U t)
  where
  constructor MkIsHomomorphism
  cong    : (t : sig.T) -> {tm, tm' : a.raw.U t}
    -> a.relation t tm tm' -> b.relation t (f t tm) (f t tm')
  semHomo : {t : sig.T} -> (op : Op sig t) -> (tms : a.raw.U ^ op.arity)
    -> b.relation t (f t (a.raw.sem op tms)) (b.raw.sem op (map f tms))

public export
record (~>) {0 sig : Signature} (a, b : Algebra sig)
  where
  constructor MkHomomorphism
  func : IFunc a.raw.U b.raw.U
  homo : IsHomomorphism a b func

public export
idIsHomo : {a : Algebra sig} -> IsHomomorphism a a (\_ => Basics.id)
idIsHomo = MkIsHomomorphism
  (\_ => id)
  (\op, tms =>
    (a.algebra.equivalence _).equalImpliesEq $
    sym $
    cong (a.raw.sem op) $
    mapId tms)

public export
idHomo : {a : Algebra sig} -> a ~> a
idHomo = MkHomomorphism _ idIsHomo

public export
compIsHomo : {a, b, c : Algebra sig} -> {f : IFunc b.raw.U c.raw.U} -> {g : IFunc a.raw.U b.raw.U}
  -> IsHomomorphism b c f -> IsHomomorphism a b g -> IsHomomorphism a c (\i => f i . g i)
compIsHomo fHomo gHomo = MkIsHomomorphism
  (\t => fHomo.cong t . gHomo.cong t)
  (\op, tms =>
    (c.algebra.equivalence _).transitive
      (fHomo.cong _ $ gHomo.semHomo op tms) $
    (c.algebra.equivalence _).transitive
      (fHomo.semHomo op (map g tms)) $
    (c.algebra.equivalence _).equalImpliesEq $
    sym $
    cong (c.raw.sem op) $
    mapComp tms)

public export
compHomo : {a, b, c : Algebra sig} -> b ~> c -> a ~> b -> a ~> c
compHomo f g = MkHomomorphism _ $ compIsHomo f.homo g.homo