blob: 9826d606a64a0e5a3fc0ff4f12b7bf6864bedc4c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
module Soat.Relation
import public Data.Setoid
%default total
public export
IRel : {a : Type} -> (a -> Type) -> Type
IRel {a = a} x = (i : a) -> x i -> x i -> Type
public export
IReflexive : {a : Type} -> (x : a -> Type) -> IRel x -> Type
IReflexive x rel = (i : a) -> Reflexive (x i) (rel i)
public export
ISymmetric : {a : Type} -> (x : a -> Type) -> IRel x -> Type
ISymmetric x rel = (i : a) -> Symmetric (x i) (rel i)
public export
ITransitive : {a : Type} -> (x : a -> Type) -> IRel x -> Type
ITransitive x rel = (i : a) -> Transitive (x i) (rel i)
public export
IEquivalence : {a : Type} -> (x : a -> Type) -> IRel x -> Type
IEquivalence x rel = (i : a) -> Setoid.Equivalence (x i) (rel i)
public export
record ISetoid (a : Type) where
constructor MkISetoid
0 U : a -> Type
0 relation : IRel U
equivalence : IEquivalence U relation
public export
isetoid : (a -> Type) -> ISetoid a
isetoid u = MkISetoid u (\_ => Equal) (\_ => equiv)
public export
IFunc : {a : Type} -> (x, y : a -> Type) -> Type
IFunc {a} x y = (i : a) -> x i -> y i
public export
record IFunction {a : Type} (x, y : ISetoid a) where
constructor MkIFunction
func : IFunc x.U y.U
cong : (i : a) -> {u, v : x.U i} -> x.relation i u v -> y.relation i (func i u) (func i v)
|