1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
module Soat.SecondOrder.Algebra.Lift.Initial
import Data.List.Elem
import Data.List.Sublist
import Data.Product
import Data.Setoid.Indexed
import Data.Setoid.Pair
import Data.Setoid.Product
import Soat.FirstOrder.Algebra
import Soat.FirstOrder.Term
import Soat.SecondOrder.Algebra
import Soat.SecondOrder.Algebra.Lift
import Soat.SecondOrder.Signature.Lift
import Syntax.PreorderReasoning.Setoid
%default total
%ambiguity_depth 4
public export
freeAlg : List sig.T -> FirstOrder.Algebra.Algebra sig
freeAlg ctx = FreeAlgebra (irrelevantCast (flip Elem ctx))
public export
Initial : (0 sig : _) -> RawAlgebra (lift sig)
Initial sig = MkRawAlgebra
(\t, ctx => (freeAlg ctx).raw.U t)
(\t, f => bindTerm {a = Free _} (\_ => Done . curry f))
(\_, (MkOp (Op op)) => Call (MkOp op) . unwrap (MkPair []))
Done
(\_, _, t, ts => bindTerm {a = Free _} (\_ => index ts) t)
public export
InitialIsAlgebra : (0 sig : _) -> SecondOrder.Algebra.IsAlgebra (lift sig) (Initial sig)
InitialIsAlgebra sig = MkIsAlgebra
{ equivalence = MkIndexedEquivalence
{ relation = \(t, ctx) => (freeAlg ctx).relation t
, reflexive = \(t, ctx) => (freeAlg ctx).algebra.equivalence.reflexive t
, symmetric = \(t, ctx) => (freeAlg ctx).algebra.equivalence.symmetric t
, transitive = \(t, ctx) => (freeAlg ctx).algebra.equivalence.transitive t
}
, renameCong = \t, f => bindTermCong
{ a = freeAlg _
, env = mate (\_ => Done . curry f)
}
, semCong = \_ , (MkOp (Op op)) => Call (MkOp op) . unwrapIntro
, substCong = \_, _, eq, eqs => bindTermCong'
{ a = freeAlg _
, cong = \_, Refl => index eqs _
, eq
}
, renameId = \t, ctx, tm =>
(freeAlg _).setoid.equivalence.symmetric t _ _ $
bindUnique (mate (\_ => Done . curry reflexive)) id (\i => Done $ sym $ curryUncurry id i) tm
, renameComp = \t, f, g, tm =>
(freeAlg _).setoid.equivalence.symmetric t _ _ $
bindUnique
{ a = freeAlg _
, env = mate (\_ => Done . curry (transitive g f))
, f = bindHomo (mate (\_ => Done . curry f)) . bindHomo (mate (\_ => Done . curry g))
, cong = \i => Done $ sym $ curryUncurry (curry f . curry g) i
, tm
}
, semNat = \f, (MkOp (Op op)), tms =>
Call (MkOp op) $
CalcWith (index (Product (freeAlg _).setoid) _) $
|~ bindTerms {a = Free _} (\_ => Done . curry f) (unwrap (MkPair []) tms)
~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry f)) (unwrap (MkPair []) tms)
.=.(bindTermsIsMap {a = Free _} _ _)
~~ map (\_ => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = []} ++ f))) (unwrap (MkPair []) tms)
..<(mapIntro' (\t =>
bindTermCong'
{rel = \_ => Equal}
{a = freeAlg _}
(\_, Refl => Done $ curryUncurry (curry f) _)) $
(Product (freeAlg _).setoid).equivalence.reflexive _ (unwrap (MkPair []) tms))
~~ unwrap (MkPair []) (map (\ty => bindTerm {a = Free _} (\_ => Done . curry (reflexive {x = fst ty} ++ f))) tms)
.=.(mapUnwrap (MkPair []) tms)
, varNat = \_, _ => Done Refl
, substNat = \t, f, tm, tms => bindUnique
{ a = freeAlg _
, env = mate (\_ => index $ map (\_ => bindTerm {a = Free _} (\_ => Done . curry f)) tms)
, f = bindHomo (mate (\_ => Done . curry f)) . bindHomo (mate (\_ => index tms))
, cong = \i =>
reflect (index (freeAlg _).setoid _) $
sym $
indexMap tms i
, tm
}
, substExnat = \t, ctx, f, tm, tms => bindUnique
{ a = freeAlg _
, env = mate (\_ => index $ shuffle f tms)
, f = bindHomo (mate (\_ => index tms)) . bindHomo (mate (\_ => Done . curry f))
, cong = \i =>
reflect (index (freeAlg _).setoid _) $
sym $
indexShuffle f i
, tm
}
, substComm = \t, ctx, tm, tms, tms' => bindUnique
{ a = freeAlg _
, env = mate (\_ => index $ map (\_ => bindTerm {a = Free _} (\_ => index tms')) tms)
, f = bindHomo (mate (\_ => index tms')) . bindHomo (mate (\_ => index tms))
, cong = \i =>
reflect (index (freeAlg _).setoid _) $
sym $
indexMap tms i
, tm
}
, substVarL = \_, _, _ => (freeAlg _).setoid.equivalence.reflexive _ _
, substVarR = \t, ctx, tm =>
(freeAlg _).setoid.equivalence.symmetric t _ _ $
bindUnique
{ v = irrelevantCast (flip Elem ctx)
, a = freeAlg ctx
, env = mate (\_ => index $ tabulate (Done {sig = sig, v = flip Elem ctx}))
, f = id
, cong = \i =>
reflect (index (freeAlg ctx).setoid _) $
sym $
indexTabulate Done i
, tm
}
, substCompat = \ctx, (MkOp (Op op)), tms, tms' =>
Call (MkOp op) $
CalcWith (index (Product (freeAlg _).setoid) _) $
|~ bindTerms {a = Free _} (\_ => index tms') (unwrap (MkPair []) tms)
~~ map (\_ => bindTerm {a = Free _} (\_ => index tms')) (unwrap (MkPair []) tms)
.=.(bindTermsIsMap {a = Free _} _ _)
~~ map (\t => (Initial sig).extendSubst ctx tms' ([], t)) (unwrap (MkPair []) tms)
..<(mapIntro' (\t => bindTermCong'
{rel = \_ => Equal}
{a = freeAlg _}
(\t, Refl => CalcWith (index (freeAlg _).setoid _) $
|~ index (map (\_ => bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive))) tms') _
~~ bindTerm {a = Free _} (\_ => Done . curry ([] {ys = []} ++ reflexive)) (index tms' _)
.=.(indexMap tms' _)
~~ index tms' _
..<(bindUnique
{ env = mate (\_ => Done . curry ([] {ys = []} ++ reflexive))
, f = id
, cong = \i => Done $ sym $ trans (curryUncurry _ i) (curryUncurry id i)
, tm = index tms' _
}))) $
(Product (freeAlg _).setoid).equivalence.reflexive _ (unwrap (MkPair []) tms))
~~ unwrap (MkPair []) (map ((Initial sig).extendSubst ctx tms') tms)
.=.(mapUnwrap (MkPair []) tms)
}
public export
InitialAlgebra : (0 sig : _) -> SecondOrder.Algebra.Algebra (lift sig)
InitialAlgebra sig = MkAlgebra (Initial sig) (InitialIsAlgebra sig)
public export
freeToInitialHomo : (0 sig : _) -> (ctx : List sig.T)
-> FreeAlgebra (irrelevantCast (flip Elem ctx)) ~>
projectAlgebra sig (InitialAlgebra sig) ctx
freeToInitialHomo sig ctx = MkHomomorphism
{ func = MkIndexedSetoidHomomorphism
{ H = \_ => id
, homomorphic = \_, _, _ => id
}
, semHomo = \(MkOp op), tms =>
Call (MkOp op) $
reflect (index (Product ((InitialAlgebra sig).setoidAt ctx)) _) $
sym $
trans (unwrapWrap (extend (Initial sig).U ctx) _) (mapId tms)
}
public export
fromInitial : (a : Algebra (lift sig)) -> (InitialAlgebra sig).setoid ~> a.setoid
fromInitial a = bundle (\(t, ctx) =>
index (bindFunc {a = projectAlgebra sig a ctx} (reindex (flip MkPair ctx) a.varFunc)) t)
public export
fromInitialHomo : (a : Algebra (lift sig)) -> InitialAlgebra sig ~> a
fromInitialHomo a = MkHomomorphism
{ func = fromInitial a
, renameHomo = \t, f => bindUnique'
{v = irrelevantCast (flip Elem _)}
{a = projectAlgebra sig a _}
(bindHomo (reindex (flip MkPair _) a.varFunc) . bindHomo (mate (\_ => Done . curry f)))
(a.renameHomo f . bindHomo (reindex (flip MkPair _) a.varFunc))
(\i => a.algebra.equivalence.symmetric _ _ _ $ a.algebra.varNat f i)
, semHomo = \ctx, (MkOp (Op op)), tms =>
a.algebra.semCong ctx (MkOp (Op op)) $
CalcWith (index (Product (reindex (\ty => (snd ty, fst ty ++ ctx)) a.setoid)) _) $
|~ wrap (MkPair []) (bindTerms {a = project a.raw ctx} (\_ => a.raw.var) (unwrap (MkPair []) tms))
~~ wrap (MkPair []) (map (\t => (fromInitial a).H (t, ctx)) (unwrap (MkPair []) tms))
.=.(cong (wrap _) $ bindTermsIsMap {a = project a.raw ctx} _ _)
~~ wrap (MkPair []) (unwrap (MkPair []) (map (\ty => (fromInitial a).H (snd ty, fst ty ++ ctx)) tms))
.=.(cong (wrap _) $ mapUnwrap (MkPair []) tms)
~~ map (\ty => (fromInitial a).H (snd ty, fst ty ++ ctx)) tms
.=.(wrapUnwrap _)
, varHomo = \i => a.algebra.equivalence.reflexive _ $ a.raw.var i
, substHomo = \t, ctx, tm, tms => bindUnique'
{v = irrelevantCast (flip Elem _)}
{a = projectAlgebra sig a _}
(bindHomo (reindex (flip MkPair _) a.varFunc) . bindHomo (mate (\_ => index tms)))
(a.substHomo1 ctx _ . bindHomo (reindex (flip MkPair _) a.varFunc))
(\i => CalcWith (index a.setoid _) $
|~ bindTerm {a = project a.raw _} (\_ => a.raw.var) (index tms i)
~~ index (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms) i
.=<(indexMap {f = \_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)} tms i)
~~ a.raw.subst _ ctx (a.raw.var i) (map (\_ => bindTerm {a = project a.raw _} (\_ => a.raw.var)) tms)
..<(a.algebra.substVarL ctx i _))
tm
}
public export
fromInitialUnique : {a : SecondOrder.Algebra.Algebra (lift sig)}
-> (f : InitialAlgebra sig ~> a)
-> (t : sig.T) -> (ctx : List sig.T) -> (tm : Term sig (flip Elem ctx) t)
-> a.relation (t, ctx) (f.func.H (t, ctx) tm) ((fromInitial a).H (t, ctx) tm)
fromInitialUnique {sig = sig} {a = a} f t ctx = bindUnique
{v = irrelevantCast (flip Elem _)}
{a = projectAlgebra sig a ctx}
(reindex (flip MkPair ctx) a.varFunc)
(projectHomo f ctx . freeToInitialHomo sig ctx)
f.varHomo
|