module Inky.Parser import public Data.List.Quantifiers import Control.WellFounded import Data.Bool import Data.DPair import Data.List import Data.List1 import Data.Nat import Data.So import Data.String.Extra import Inky.Data.Context import Inky.Data.Context.Var import Inky.Data.SnocList.Quantifiers import Inky.Data.SnocList.Thinning import Text.Lexer export Interpolation Bounds where interpolate bounds = "\{show (1 + bounds.startLine)}:\{show bounds.startCol}--\{show (1 + bounds.endLine)}:\{show bounds.endCol}" -- Parser Expressions ---------------------------------------------------------- export infixl 3 <**>, **>, <** export infixr 2 <||> public export linUnless : Bool -> Context a -> Context a linUnless False ctx = [<] linUnless True ctx = ctx public export linUnlessLin : (0 a : Type) -> (b : Bool) -> linUnless {a} b [<] = [<] linUnlessLin a False = Refl linUnlessLin a True = Refl public export data Parser : (i : Type) -> (nil : Bool) -> (locked, free : Context (Bool, Type)) -> Type -> Type public export data ParserChain : (i : Type) -> (nil : Bool) -> (locked, free : Context (Bool, Type)) -> List Type -> Type data Parser where Var : Var free (nil, a) -> Parser i nil locked free a Lit : (text : i) -> Parser i False locked free String Seq : ParserChain i nil locked free as -> Parser i nil locked free (HList as) OneOf : {nils : List Bool} -> All (\nil => Parser i nil locked free a) nils -> {auto 0 prf : length (filter Basics.id nils) `LTE` 1} -> Parser i (any Basics.id nils) locked free a Fix : (0 x : String) -> Parser i nil (locked :< (x :- (nil, a))) free a -> Parser i nil locked free a Map : (a -> b) -> Parser i nil locked free a -> Parser i nil locked free b WithBounds : Parser i nil locked free a -> Parser i nil locked free (WithBounds a) data ParserChain where Nil : ParserChain i True locked free [] (::) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> ParserChain i nil2 (linUnless nil1 locked) (free ++ linUnless (not nil1) locked) as -> ParserChain i (nil1 && nil2) locked free (a :: as) %name Parser p, q %name ParserChain ps, qs -- Weakening ------------------------------------------------------------------- public export rename : locked1 `Thins` locked2 -> free1 `Thins` free2 -> {auto len : LengthOf locked2} -> Parser i nil locked1 free1 a -> Parser i nil locked2 free2 a public export renameChain : locked1 `Thins` locked2 -> free1 `Thins` free2 -> {auto len : LengthOf locked2} -> ParserChain i nil locked1 free1 a -> ParserChain i nil locked2 free2 a public export renameAll : locked1 `Thins` locked2 -> free1 `Thins` free2 -> {auto len : LengthOf locked2} -> {0 nils : List Bool} -> All (\nil => Parser i nil locked1 free1 a) nils -> All (\nil => Parser i nil locked2 free2 a) nils rename f g (Var i) = Var (toVar $ indexPos g i.pos) rename f g (Lit text) = Lit text rename f g (Seq ps) = Seq (renameChain f g ps) rename f g (OneOf ps) = OneOf (renameAll f g ps) rename f g (Fix x p) = Fix x (rename (Keep f) g p) rename f g (Map h p) = Map h (rename f g p) rename f g (WithBounds p) = WithBounds (rename f g p) renameChain f g [] = [] renameChain f g ((::) {nil1 = False} p ps) = rename f g p :: renameChain Id (append g f) ps renameChain f g ((::) {nil1 = True} p ps) = rename f g p :: renameChain f g ps renameAll f g [] = [] renameAll f g (p :: ps) = rename f g p :: renameAll f g ps public export weaken : (len1 : LengthOf free2) -> {auto len2 : LengthOf locked} -> Parser i nil (free2 ++ locked) free1 a -> Parser i nil locked (free1 ++ free2) a public export weakenChain : (len1 : LengthOf free2) -> {auto len2 : LengthOf locked} -> ParserChain i nil (free2 ++ locked) free1 a -> ParserChain i nil locked (free1 ++ free2) a public export weakenAll : (len1 : LengthOf free2) -> {auto len2 : LengthOf locked} -> {0 nils : List Bool} -> All (\nil => Parser i nil (free2 ++ locked) free1 a) nils -> All (\nil => Parser i nil locked (free1 ++ free2) a) nils weaken len1 (Var x) = Var (wknL x) weaken len1 (Lit text) = Lit text weaken len1 (Seq ps) = Seq (weakenChain len1 ps) weaken len1 (OneOf ps) = OneOf (weakenAll len1 ps) weaken len1 (Fix x p) = Fix x (weaken len1 p) weaken len1 (Map f p) = Map f (weaken len1 p) weaken len1 (WithBounds p) = WithBounds (weaken len1 p) weakenChain len1 [] = [] weakenChain len1 ((::) {nil1 = False} p ps) = weaken len1 p :: renameChain Id (assoc len2) ps weakenChain len1 ((::) {nil1 = True} p ps) = weaken len1 p :: weakenChain len1 ps weakenAll len1 [] = [] weakenAll len1 (p :: ps) = weaken len1 p :: weakenAll len1 ps -- Substitution ---------------------------------------------------------------- public export sub : {auto len : LengthOf locked2} -> (f : All (Assoc0 $ (\nilA => Parser i (fst nilA) [<] (free2 ++ locked2) (snd nilA))) locked1) -> (g : All (Assoc0 $ (\nilA => Parser i (fst nilA) locked2 free2 (snd nilA))) free1) -> Parser i nil locked1 free1 a -> Parser i nil locked2 free2 a public export subChain : {auto len : LengthOf locked2} -> (f : All (Assoc0 $ (\nilA => Parser i (fst nilA) [<] (free2 ++ locked2) (snd nilA))) locked1) -> (g : All (Assoc0 $ (\nilA => Parser i (fst nilA) locked2 free2 (snd nilA))) free1) -> ParserChain i nil locked1 free1 a -> ParserChain i nil locked2 free2 a public export subAll : {auto len : LengthOf locked2} -> (f : All (Assoc0 $ (\nilA => Parser i (fst nilA) [<] (free2 ++ locked2) (snd nilA))) locked1) -> (g : All (Assoc0 $ (\nilA => Parser i (fst nilA) locked2 free2 (snd nilA))) free1) -> {0 nils : List Bool} -> All (\nil => Parser i nil locked1 free1 a) nils -> All (\nil => Parser i nil locked2 free2 a) nils sub f g (Var x) = (indexAll x.pos g).value sub f g (Lit text) = Lit text sub f g (Seq ps) = Seq (subChain f g ps) sub f g (OneOf ps) = OneOf (subAll f g ps) sub f g (Fix x p) = Fix x $ sub (mapProperty (map $ rename Id (Drop Id)) f :< (x :- Var (%%% x))) (mapProperty (map $ rename (Drop Id) Id) g) p sub f g (Map h p) = Map h (sub f g p) sub f g (WithBounds p) = WithBounds (sub f g p) subChain f g [] = [] subChain f g ((::) {nil1 = False} p ps) = sub f g p :: subChain [<] (mapProperty (map $ weaken len) g ++ f) ps subChain f g ((::) {nil1 = True} p ps) = sub f g p :: subChain f g ps subAll f g [] = [] subAll f g (p :: ps) = sub f g p :: subAll f g ps -- Typing ---------------------------------------------------------------------- -- Lists are sufficient, as we assume each symbol appears once. -- TODO: switch to some efficient tree? public export peek : (env : All (Assoc0 $ const $ List i) free) -> Parser i nil locked free a -> List i public export peekChain : (env : All (Assoc0 $ const $ List i) free) -> ParserChain i nil locked free a -> List i public export peekAll : (env : All (Assoc0 $ const $ List i) free) -> {0 nils : List Bool} -> All (\nil => Parser i nil locked free a) nils -> All (const $ List i) nils peek env (Var x) = (indexAll x.pos env).value peek env (Lit text) = [text] peek env (Seq ps) = peekChain env ps peek env (OneOf ps) = concat (forget $ peekAll env ps) peek env (Fix x p) = peek env p peek env (Map f p) = peek env p peek env (WithBounds p) = peek env p peekChain env [] = [] peekChain env ((::) {nil1 = False} p ps) = peek env p peekChain env ((::) {nil1 = True} p ps) = peek env p ++ peekChain env ps peekAll env [] = [] peekAll env (p :: ps) = peek env p :: peekAll env ps public export follow : (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> Parser i nil locked free a -> List i public export followChain : (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> ParserChain i nil locked free a -> List i public export followAll : (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> {0 nils : List Bool} -> All (\nil => Parser i nil locked free a) nils -> List i follow penv1 penv2 fenv1 fenv2 (Var x) = (indexAll x.pos fenv2).value follow penv1 penv2 fenv1 fenv2 (Lit text) = [] follow penv1 penv2 fenv1 fenv2 (Seq ps) = followChain penv1 penv2 fenv1 fenv2 ps follow penv1 penv2 fenv1 fenv2 (OneOf ps) = followAll penv1 penv2 fenv1 fenv2 ps follow penv1 penv2 fenv1 fenv2 (Fix x p) = -- Conjecture: The fix point converges after one step -- Proof: -- - we always add information -- - no step depends on existing information follow (penv1 :< (x :- peek penv2 p)) penv2 (fenv1 :< (x :- empty)) fenv2 p follow penv1 penv2 fenv1 fenv2 (Map f p) = follow penv1 penv2 fenv1 fenv2 p follow penv1 penv2 fenv1 fenv2 (WithBounds p) = follow penv1 penv2 fenv1 fenv2 p followChain penv1 penv2 fenv1 fenv2 [] = [] followChain penv1 penv2 fenv1 fenv2 ((::) {nil1 = False, nil2} p ps) = (if nil2 then peekChain (penv2 ++ penv1) ps ++ follow penv1 penv2 fenv1 fenv2 p else []) ++ followChain [<] (penv2 ++ penv1) [<] (fenv2 ++ fenv1) ps followChain penv1 penv2 fenv1 fenv2 ((::) {nil1 = True, nil2} p ps) = (if nil2 then peekChain penv2 ps ++ follow penv1 penv2 fenv1 fenv2 p else []) ++ followChain penv1 penv2 fenv1 fenv2 ps followAll penv1 penv2 fenv1 fenv2 [] = [] followAll penv1 penv2 fenv1 fenv2 (p :: ps) = follow penv1 penv2 fenv1 fenv2 p ++ followAll penv1 penv2 fenv1 fenv2 ps public export all' : (a -> Bool) -> List a -> Bool all' f [] = True all' f (x :: xs) = f x && all' f xs allTrue : (xs : List a) -> all' (const True) xs = True allTrue [] = Refl allTrue (x :: xs) = allTrue xs public export disjoint : Eq a => List (List a) -> Bool disjoint [] = True disjoint (xs :: xss) = all' (\ys => all' (\x => not (x `elem` ys)) xs) xss && disjoint xss namespace WellTyped public export wellTyped : (e : Eq i) -> (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> Parser i nil locked free a -> Bool public export wellTypedChain : (e : Eq i) -> (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> ParserChain i nil locked free a -> Bool public export allWellTyped : (e : Eq i) -> (penv1 : All (Assoc0 $ const $ List i) locked) -> (penv2 : All (Assoc0 $ const $ List i) free) -> (fenv1 : All (Assoc0 $ const $ List i) locked) -> (fenv2 : All (Assoc0 $ const $ List i) free) -> {0 nils : List Bool} -> All (\nil => Parser i nil locked free a) nils -> Bool wellTyped e penv1 penv2 fenv1 fenv2 (Var i) = True wellTyped e penv1 penv2 fenv1 fenv2 (Lit txt) = True wellTyped e penv1 penv2 fenv1 fenv2 (Seq ps) = wellTypedChain e penv1 penv2 fenv1 fenv2 ps wellTyped e penv1 penv2 fenv1 fenv2 (OneOf {nils, prf} ps) = disjoint (forget $ peekAll penv2 ps) && allWellTyped e penv1 penv2 fenv1 fenv2 ps wellTyped e penv1 penv2 fenv1 fenv2 (Fix x p) = wellTyped e (penv1 :< (x :- peek penv2 p)) penv2 (fenv1 :< (x :- follow (penv1 :< (x :- peek penv2 p)) penv2 (fenv1 :< (x :- [])) fenv2 p)) fenv2 p wellTyped e penv1 penv2 fenv1 fenv2 (Map f p) = wellTyped e penv1 penv2 fenv1 fenv2 p wellTyped e penv1 penv2 fenv1 fenv2 (WithBounds p) = wellTyped e penv1 penv2 fenv1 fenv2 p wellTypedChain e penv1 penv2 fenv1 fenv2 [] = True wellTypedChain e penv1 penv2 fenv1 fenv2 ((::) {nil1 = False} p ps) = disjoint [follow penv1 penv2 fenv1 fenv2 p, peekChain (penv2 ++ penv1) ps] && wellTyped e penv1 penv2 fenv1 fenv2 p && wellTypedChain e [<] (penv2 ++ penv1) [<] (fenv2 ++ fenv1) ps wellTypedChain e penv1 penv2 fenv1 fenv2 ((::) {nil1 = True} p ps) = disjoint [follow penv1 penv2 fenv1 fenv2 p, peekChain penv2 ps] && wellTyped e penv1 penv2 fenv1 fenv2 p && wellTypedChain e penv1 penv2 fenv1 fenv2 ps allWellTyped e penv1 penv2 fenv1 fenv2 [] = True allWellTyped e penv1 penv2 fenv1 fenv2 (p :: ps) = wellTyped e penv1 penv2 fenv1 fenv2 p && allWellTyped e penv1 penv2 fenv1 fenv2 ps -- Parsing Function ------------------------------------------------------------ -- Utilty for recursion public export data SmallerX : Bool -> List a -> List a -> Type where Strict : {0 xs, ys : List a} -> xs `Smaller` ys -> SmallerX False xs ys Lax : {0 xs, ys : List a} -> size xs `LTE` size ys -> SmallerX True xs ys transX : {xs, ys, zs : List a} -> SmallerX b1 xs ys -> SmallerX b2 ys zs -> SmallerX (b1 && b2) xs zs transX (Strict prf1) (Strict prf2) = Strict (transitive prf1 (lteSuccLeft prf2)) transX (Strict prf1) (Lax prf2) = Strict (transitive prf1 prf2) transX (Lax prf1) (Strict prf2) = Strict (transitive (LTESucc prf1) prf2) transX (Lax prf1) (Lax prf2) = Lax (transitive prf1 prf2) ofSmaller : {b : Bool} -> {0 xs, ys : List a} -> xs `Smaller` ys -> SmallerX b xs ys ofSmaller {b = False} prf = Strict prf ofSmaller {b = True} prf = Lax (lteSuccLeft prf) wknSmallerL : SmallerX b1 xs ys -> (b2 : Bool) -> SmallerX (b1 || b2) xs ys wknSmallerL (Strict prf) _ = ofSmaller prf wknSmallerL (Lax prf) _ = Lax prf wknSmallerR : (b1 : Bool) -> SmallerX b2 xs ys -> SmallerX (b1 || b2) xs ys wknSmallerR b1 (Strict prf) = if b1 then ofSmaller prf else ofSmaller prf wknSmallerR b1 (Lax prf) = if b1 then Lax prf else Lax prf forget : SmallerX b xs ys -> SmallerX True xs ys forget = wknSmallerR True toSmaller : {xs, ys : List a} -> (0 _ : SmallerX False xs ys) -> xs `Smaller` ys toSmaller {xs = []} {ys = []} (Strict prf) impossible toSmaller {xs = []} {ys = (y :: ys)} (Strict prf) = LTESucc LTEZero toSmaller {xs = (x :: xs)} {ys = []} (Strict prf) impossible toSmaller {xs = (x :: xs)} {ys = (y :: ys)} (Strict (LTESucc prf)) = LTESucc (toSmaller (Strict prf)) anyCons : (b : Bool) -> (bs : List Bool) -> any Basics.id (b :: bs) = b || any Basics.id bs anyCons b [] = sym (orFalseNeutral b) anyCons b (b' :: bs) = trans (anyCons (b || b') bs) $ trans (sym $ orAssociative b b' (any id bs)) (cong (b ||) (sym $ anyCons b' bs)) anyTrue : (bs : List Bool) -> any Basics.id (True :: bs) = True anyTrue = anyCons True -- Return Type namespace M public export data M : List a -> Bool -> Type -> Type where Err : String -> M xs nil b Ok : (res : b) -> (ys : List a) -> (0 prf : SmallerX nil ys xs) -> M xs nil b export Functor (M xs nil) where map f (Err msg) = Err msg map f (Ok res ys prf) = Ok (f res) ys prf export pure : {xs : List a} -> (x : b) -> M xs True b pure x = Ok x xs (Lax reflexive) export (>>=) : M xs nil b -> (b -> {ys : List a} -> {auto 0 prf : SmallerX nil ys xs} -> M ys nil' c) -> M xs (nil && nil') c Err str >>= f = Err str Ok res ys prf >>= f = case f {ys, prf} res of Err str => Err str Ok res' zs prf' => Ok res' zs (rewrite andCommutative nil nil' in transX prf' prf) export take : Eq a => Interpolation a => (toks : List a) -> (xs : List (WithBounds (Token a))) -> M xs False String take [tok] [] = Err "expected \{tok}; got end of input" take toks [] = Err "expected one of: \{join ", " $ map (\k => "\{k}") toks}; got end of input" take toks (x :: xs) = if x.val.kind `elem` toks then Ok x.val.text xs (Strict reflexive) else case toks of [tok] => Err "\{x.bounds}: expected \{tok}; got \{x.val.kind}" toks => Err "\{x.bounds}: expected one of: \{join ", " $ map (\k => "\{k}") toks}; got \{x.val.kind}" export bounds : (xs : List (WithBounds a)) -> M xs True (Bool, Bounds) bounds [] = Ok (True, MkBounds (-1) (-1) (-1) (-1)) [] (Lax reflexive) bounds (x :: xs) = Ok (x.isIrrelevant, x.bounds) (x :: xs) (Lax reflexive) export wknL : M xs b1 a -> (b2 : Bool) -> M xs (b1 || b2) a wknL (Err msg) b2 = Err msg wknL (Ok res ys prf) b2 = Ok res ys (wknSmallerL prf b2) export wknR : (b1 : Bool) -> M xs b2 a -> M xs (b1 || b2) a wknR b1 (Err msg) = Err msg wknR b1 (Ok res ys prf) = Ok res ys (wknSmallerR b1 prf) export anyL : (b : Bool) -> {0 bs : List Bool} -> M xs (any Basics.id bs) a -> M xs (any Basics.id (b :: bs)) a anyL b m = rewrite anyCons b bs in wknR b m export anyR : (bs : List Bool) -> M xs b a -> M xs (any Basics.id (b :: bs)) a anyR bs m = rewrite anyCons b bs in wknL m (any id bs) -- The Big Function ||| Searches `sets` for the first occurence of `x`. ||| On failure, returns the index for the nil element, if it exists. ||| ||| # Unsafe Invariants ||| * `nils` has at most one `True` element ||| * `sets` are disjoint lookahead : Eq a => (x : Maybe a) -> (nils : List Bool) -> (sets : Lazy (All (const $ List a) nils)) -> Maybe (Any (const ()) nils) lookahead x [] [] = Nothing lookahead x (nil :: nils) (set :: sets) = (do x <- x if x `elem` set then Just (Here ()) else Nothing) <|> There <$> lookahead x nils sets <|> (if nil then Just (Here ()) else Nothing) parser : (e : Eq i) => Interpolation i => (p : Parser i nil locked free a) -> {penv1 : _} -> {penv2 : _} -> {0 fenv1 : _} -> {0 fenv2 : _} -> (0 wf : So (wellTyped e penv1 penv2 fenv1 fenv2 p)) -> (xs : List (WithBounds (Token i))) -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX False ys xs) -> uncurry (M ys) x)) locked -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX True ys xs) -> uncurry (M ys) x)) free -> M xs nil a parserChain : (e : Eq i) => Interpolation i => (ps : ParserChain i nil locked free as) -> {penv1 : _} -> {penv2 : _} -> {0 fenv1 : _} -> {0 fenv2 : _} -> (0 wf : So (wellTypedChain e penv1 penv2 fenv1 fenv2 ps)) -> (xs : List (WithBounds (Token i))) -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX False ys xs) -> uncurry (M ys) x)) locked -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX True ys xs) -> uncurry (M ys) x)) free -> M xs nil (HList as) parserOneOf : (e : Eq i) => Interpolation i => {nils : List Bool} -> (at : Any (const ()) nils) -> (ps : All (\nil => Parser i nil locked free a) nils) -> {penv1 : _} -> {penv2 : _} -> {0 fenv1 : _} -> {0 fenv2 : _} -> (0 wf : So (allWellTyped e penv1 penv2 fenv1 fenv2 ps)) -> (xs : List (WithBounds (Token i))) -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX False ys xs) -> uncurry (M ys) x)) locked -> All (Assoc0 (\x => (ys : List (WithBounds (Token i))) -> (0 _ : SmallerX True ys xs) -> uncurry (M ys) x)) free -> M xs (any Basics.id nils) a parser (Var x) wf xs env1 env2 = (indexAll x.pos env2).value xs (Lax reflexive) parser (Lit text) wf xs env1 env2 = take [text] xs parser (Seq ps) wf xs env1 env2 = parserChain ps wf xs env1 env2 parser (OneOf {nils} ps) wf [] env1 env2 = let 0 wfs = soAnd {a = disjoint (forget $ peekAll penv2 ps)} wf in let sets = peekAll penv2 ps in case lookahead Nothing nils sets of Nothing => Err "unexpected end of input" Just at => parserOneOf at ps (snd wfs) [] env1 env2 parser (OneOf {nils} ps) wf (x :: xs) env1 env2 = let 0 wfs = soAnd {a = disjoint (forget $ peekAll penv2 ps)} wf in let sets = peekAll penv2 ps in case lookahead (Just x.val.kind) nils sets of Nothing => Err "\{x.bounds}: expected one of: \{join ", " $ map (\k => "\{k}") $ concat $ forget sets}; got \{x.val.kind}" Just at => parserOneOf at ps (snd wfs) (x :: xs) env1 env2 parser (Fix {a, nil} x p) wf xs env1 env2 = let f = parser p wf in sizeInd {P = \ys => (0 prf : SmallerX True ys xs) -> M ys nil a} (\ys, rec, lte => f ys ( mapProperty (map (\f, zs, 0 prf => f zs $ transX prf lte)) env1 :< (x :- (\zs, prf => rec zs (toSmaller prf) (forget $ transX prf lte))) ) (mapProperty (map (\f, zs, prf => f zs $ transX prf lte)) env2)) xs (Lax reflexive) parser (Map f p) wf xs env1 env2 = f <$> parser p wf xs env1 env2 parser (WithBounds p) wf xs env1 env2 = do (irrel, bounds) <- bounds xs rewrite sym $ andTrueNeutral nil x <- parser p wf _ (mapProperty (map (\f, zs, 0 prf => f zs $ transX {b2 = True} prf %search)) env1) (mapProperty (map (\f, zs, 0 prf => f zs $ transX prf %search)) env2) pure (MkBounded x irrel bounds) parserChain [] wf xs env1 env2 = Ok [] xs (Lax reflexive) parserChain ((::) {nil1 = False, nil2} p ps) wf xs env1 env2 = let 0 wfs = soAnd wf in let 0 wfs' = soAnd (snd wfs) in do x <- parser p (fst wfs') xs env1 env2 y <- parserChain ps (snd wfs') _ [<] ( mapProperty (map (\f, zs, 0 prf => f zs $ forget $ transX {b2 = False} prf %search)) env2 ++ mapProperty (map (\f, zs, 0 prf => f zs $ transX prf %search)) env1 ) pure (x :: y) parserChain ((::) {nil1 = True, nil2} p ps) wf xs env1 env2 = let 0 wfs = soAnd wf in let 0 wfs' = soAnd (snd wfs) in do x <- parser p (fst wfs') xs env1 env2 rewrite sym $ andTrueNeutral nil2 y <- parserChain ps (snd wfs') _ (mapProperty (map (\f, zs, prf => f zs $ transX {b2 = True} prf %search)) env1) (mapProperty (map (\f, zs, prf => f zs $ transX prf %search)) env2) pure (x :: y) parserOneOf {nils = nil :: nils} (Here ()) (p :: ps) wf xs env1 env2 = let 0 wfs = soAnd wf in anyR nils (parser p (fst wfs) xs env1 env2) parserOneOf {nils = nil :: nils} (There at) (p :: ps) wf xs env1 env2 = let 0 wfs = soAnd {a = wellTyped e penv1 penv2 fenv1 fenv2 p} wf in anyL nil (parserOneOf at ps (snd wfs) xs env1 env2) export parse : (e : Eq i) => Interpolation i => (p : Parser i nil [<] [<] a) -> {auto 0 wf : So (wellTyped e [<] [<] [<] [<] p)} -> (xs : List (WithBounds (Token i))) -> M xs nil a parse p xs = parser p wf xs [<] [<] -- Functor --------------------------------------------------------------------- public export (++) : {nil2 : Bool} -> ParserChain i nil1 locked free as -> ParserChain i nil2 (linUnless nil1 locked) (free ++ linUnless (not nil1) locked) bs -> ParserChain i (nil1 && nil2) locked free (as ++ bs) [] ++ qs = qs ((::) {nil1 = False, nil2} p ps) ++ qs = p :: ( ps ++ rewrite linUnlessLin (Bool, Type) nil2 in rewrite linUnlessLin (Bool, Type) (not nil2) in qs) ((::) {nil1 = True, nil2} p ps) ++ qs = p :: (ps ++ qs) public export (<**>) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> Parser i nil2 (linUnless nil1 locked) (free ++ linUnless (not nil1) locked) b -> Parser i (nil1 && nil2) locked free (a, b) p <**> Seq ps = Map (\(x :: xs) => (x, xs)) $ Seq (p :: ps) -- HACK: andTrueNeutral isn't public, so do a full case split. (<**>) {nil1 = True, nil2 = True} p q = Map (\[x, y] => (x, y)) $ Seq [p, q] (<**>) {nil1 = True, nil2 = False} p q = Map (\[x, y] => (x, y)) $ Seq [p, q] (<**>) {nil1 = False, nil2 = True} p q = Map (\[x, y] => (x, y)) $ Seq [p, q] (<**>) {nil1 = False, nil2 = False} p q = Map (\[x, y] => (x, y)) $ Seq [p, q] public export Functor (Parser i nil locked free) where map f (Map g p) = Map (f . g) p map f p = Map f p public export Applicative (Parser i True locked free) where pure x = map (const x) (Seq []) p <*> q = map (\(f, x) => f x) (p <**> q) -- Combinator ------------------------------------------------------------------ public export (<|>) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> Parser i nil2 locked free a -> {auto 0 prf : length (filter Basics.id [nil1, nil2]) `LTE` 1} -> Parser i (nil1 || nil2) locked free a p <|> q = OneOf [p, q] public export (<||>) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> Parser i nil2 locked free b -> {auto 0 prf : length (filter Basics.id [nil1, nil2]) `LTE` 1} -> Parser i (nil1 || nil2) locked free (Either a b) p <||> q = Left <$> p <|> Right <$> q public export (**>) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> Parser i nil2 (linUnless nil1 locked) (free ++ linUnless (not nil1) locked) b -> Parser i (nil1 && nil2) locked free b p **> q = snd <$> (p <**> q) public export (<**) : {nil1, nil2 : Bool} -> Parser i nil1 locked free a -> Parser i nil2 (linUnless nil1 locked) (free ++ linUnless (not nil1) locked) b -> Parser i (nil1 && nil2) locked free a p <** q = fst <$> (p <**> q) public export match : TokenKind i => (kind : i) -> Parser i False locked free (TokType kind) match kind = Map (tokValue kind) $ Lit kind public export enclose : {b1, b2, b3 : Bool} -> (left : Parser i b1 locked free ()) -> (right : Parser i b3 (linUnless b2 (linUnless b1 locked)) ((free ++ linUnless (not b1) locked) ++ linUnless (not b2) (linUnless b1 locked)) ()) -> Parser i b2 (linUnless b1 locked) (free ++ linUnless (not b1) locked) a -> Parser i (b1 && b2 && b3 && True) locked free a enclose left right p = (\[_, x, _] => x) <$> Seq {as = [(), a, ()]} [left, p, right] public export option : Parser i False locked free a -> Parser i True locked free (Maybe a) option p = (Just <$> p) <|> pure Nothing public export plus : {auto len : LengthOf locked} -> Parser i False locked free a -> Parser i False locked free (List1 a) plus p = Fix "plus" ( uncurry (:::) <$> (rename (Drop Id) Id p <**> maybe [] forget <$> option (Var $ %%% "plus"))) public export star : {auto len : LengthOf locked} -> Parser i False locked free a -> Parser i True locked free (List a) star p = maybe [] forget <$> option (plus p) public export sepBy1 : {auto len : LengthOf locked} -> (sep : Parser i False locked free ()) -> Parser i False locked free a -> Parser i False locked free (List1 a) sepBy1 sep p = uncurry (:::) <$> (p <**> star (weaken len sep **> weaken len p)) public export sepBy : {auto len : LengthOf locked} -> (sep : Parser i False locked free ()) -> Parser i False locked free a -> Parser i True locked free (List a) sepBy sep p = maybe [] forget <$> option (sepBy1 sep p)