module Inky.Term.Checks import Control.Function import Data.DPair import Data.List.Quantifiers import Data.Singleton import Data.These import Flap.Data.SnocList.Quantifiers import Flap.Decidable import Flap.Decidable.Maybe import Inky.Term import Inky.Term.Recompute %hide Prelude.Ops.infixl.(>=>) -- Synthesis gives unique types synthsUnique : Synths tyEnv tmEnv e a -> Synths tyEnv tmEnv e b -> a = b checkSpineUnique : CheckSpine tyEnv tmEnv a ts b -> CheckSpine tyEnv tmEnv a ts c -> b = c allSynthsUnique : AllSynths tyEnv tmEnv es as -> AllSynths tyEnv tmEnv es bs -> as = bs synthsUnique (AnnotS _ _) (AnnotS _ _) = Refl synthsUnique VarS VarS = Refl synthsUnique (LetS prf1 prf2) (LetS prf1' prf2') = let prf2' = rewrite synthsUnique prf1 prf1' in prf2' in synthsUnique prf2 prf2' synthsUnique (LetTyS _ prf) (LetTyS _ prf') = synthsUnique prf prf' synthsUnique (AppS prf prfs) (AppS prf' prfs') = let prfs' = rewrite synthsUnique prf prf' in prfs' in checkSpineUnique prfs prfs' synthsUnique (TupS {es} prfs) (TupS prfs') = cong TProd $ allSynthsUnique prfs prfs' synthsUnique (PrjS {as} prf i) (PrjS {as = bs} prf' j) = let j = rewrite inj TProd $ synthsUnique prf prf' in j in cong fst $ lookupUnique as i j synthsUnique (UnrollS {x, a} prf) (UnrollS {x = y, a = b} prf') = cong (\(x ** a) => sub [ NotSynths tyEnv tmEnv e -> Void checksSplit : Checks tyEnv tmEnv a t -> NotChecks tyEnv tmEnv a t -> Void checkSpineSplit : CheckSpine tyEnv tmEnv a ts b -> NotCheckSpine tyEnv tmEnv a ts -> Void allSynthsSplit : AllSynths tyEnv tmEnv es as -> AnyNotSynths tyEnv tmEnv es -> Void allChecksSplit : (0 fresh : AllFresh as.names) -> AllChecks tyEnv tmEnv as ts -> AnyNotChecks tyEnv tmEnv as ts -> Void allBranchesSplit : (0 fresh : AllFresh as.names) -> AllBranches tyEnv tmEnv as a ts -> AnyNotBranches tyEnv tmEnv as a ts -> Void synthsSplit (AnnotS wf prf) (AnnotNS contras) = these (wellFormedSplit wf) (checksSplit prf) (const $ checksSplit prf) contras synthsSplit VarS contra = absurd contra synthsSplit (LetS prf1 prf2) (LetNS1 contra) = synthsSplit prf1 contra synthsSplit (LetS prf1 prf2) (LetNS2 prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in synthsSplit prf2 contra synthsSplit (LetTyS wf prf) (LetTyNS contras) = these (wellFormedSplit wf) (synthsSplit prf) (const $ synthsSplit prf) contras synthsSplit (AppS prf prfs) (AppNS1 contra) = synthsSplit prf contra synthsSplit (AppS prf prfs) (AppNS2 prf' contras) = let contras = rewrite synthsUnique prf prf' in contras in checkSpineSplit prfs contras synthsSplit (TupS prfs) (TupNS contras) = allSynthsSplit prfs contras synthsSplit (PrjS prf i) (PrjNS1 contra) = synthsSplit prf contra synthsSplit (PrjS {as} prf i) (PrjNS2 prf' contra) = void $ contra as $ synthsUnique prf' prf synthsSplit (PrjS {as, a} prf i) (PrjNS3 {as = bs} prf' contra) = let i = rewrite inj TProd $ synthsUnique prf' prf in i in void $ contra a i synthsSplit (UnrollS prf) (UnrollNS1 contra) = synthsSplit prf contra synthsSplit (UnrollS {x, a} prf) (UnrollNS2 prf' contra) = void $ contra x a $ synthsUnique prf' prf synthsSplit (MapS wf1 wf2 wf3) (MapNS contras) = these (wellFormedSplit wf1) (these (wellFormedSplit wf2) (wellFormedSplit wf3) (const $ wellFormedSplit wf3)) (const $ these (wellFormedSplit wf2) (wellFormedSplit wf3) (const $ wellFormedSplit wf3)) contras checksSplit (AnnotC prf1 prf2) (EmbedNC1 Annot contra) = synthsSplit prf1 contra checksSplit (VarC prf1 prf2) (EmbedNC1 Var contra) = synthsSplit prf1 contra checksSplit (AppC prf1 prf2) (EmbedNC1 App contra) = synthsSplit prf1 contra checksSplit (PrjC prf1 prf2) (EmbedNC1 Prj contra) = synthsSplit prf1 contra checksSplit (UnrollC prf1 prf2) (EmbedNC1 Unroll contra) = synthsSplit prf1 contra checksSplit (MapC prf1 prf2) (EmbedNC1 Map contra) = synthsSplit prf1 contra checksSplit (AnnotC prf1 prf2) (EmbedNC2 Annot prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (VarC prf1 prf2) (EmbedNC2 Var prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (AppC prf1 prf2) (EmbedNC2 App prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (PrjC prf1 prf2) (EmbedNC2 Prj prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (UnrollC prf1 prf2) (EmbedNC2 Unroll prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (MapC prf1 prf2) (EmbedNC2 Map prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in alphaSplit prf2 contra checksSplit (LetC prf1 prf2) (LetNC1 contra) = synthsSplit prf1 contra checksSplit (LetC prf1 prf2) (LetNC2 prf1' contra) = let contra = rewrite synthsUnique prf1 prf1' in contra in checksSplit prf2 contra checksSplit (LetTyC wf prf) (LetTyNC contras) = these (wellFormedSplit wf) (checksSplit prf) (const $ checksSplit prf) contras checksSplit (AbsC prf1 prf2) (AbsNC1 contra) = isFunctionSplit prf1 contra checksSplit (AbsC prf1 prf2) (AbsNC2 prf1' contra) = let (eq1, eq2) = isFunctionUnique prf1 prf1' in let contra = rewrite eq1 in rewrite eq2 in contra in checksSplit prf2 contra checksSplit (TupC {as} prfs) (TupNC1 contra) = void $ contra as Refl checksSplit (TupC {as} prfs) (TupNC2 contras) = allChecksSplit as.fresh prfs contras checksSplit (InjC {as} i prf) (InjNC1 contra) = void $ contra as Refl checksSplit (InjC {a} i prf) (InjNC2 contra) = void $ contra a i checksSplit (InjC {as} i prf) (InjNC3 j contra) = let contra = rewrite cong fst $ lookupUnique as i j in contra in checksSplit prf contra checksSplit (CaseC prf prfs) (CaseNC1 contra) = synthsSplit prf contra checksSplit (CaseC {as} prf prfs) (CaseNC2 prf' contra) = void $ contra as $ synthsUnique prf' prf checksSplit (CaseC {as} prf prfs) (CaseNC3 prf' contras) = let contras = rewrite inj TSum $ synthsUnique prf prf' in contras in allBranchesSplit as.fresh prfs contras checksSplit (RollC {x, a} prf) (RollNC1 contra) = void $ contra x a Refl checksSplit (RollC prf) (RollNC2 contra) = checksSplit prf contra checksSplit (FoldC prf1 prf2) (FoldNC1 contra) = synthsSplit prf1 contra checksSplit (FoldC {x, a} prf1 prf2) (FoldNC2 prf1' contra) = void $ contra x a $ synthsUnique prf1' prf1 checksSplit (FoldC {y, t, b} prf1 prf2) (FoldNC3 prf1' contra) = let contra = replace {p = \(x ** a) => NotChecks tyEnv (tmEnv :< (y :- sub [ These (NotChecks tyEnv tmEnv a t) (AnyNotChecks tyEnv tmEnv (dropElem as i) ts)} (lookupUnique (MkRow as fresh) j i) contras 0 fresh = dropElemFresh as fresh i in these (checksSplit prf) (allChecksSplit fresh prfs) (const $ allChecksSplit fresh prfs) contras allBranchesSplit fresh (Step i prf prfs) (Step1 contra) = void $ contra _ i allBranchesSplit fresh (Step {as, b, x, t, ts} i prf prfs) (Step2 j contras) = let contras = replace {p = \(a ** i) => These (NotChecks tyEnv (tmEnv :< (x :- a)) b t) (AnyNotBranches tyEnv tmEnv (dropElem as i) b ts)} (lookupUnique (MkRow as fresh) j i) contras 0 fresh = dropElemFresh as fresh i in these (checksSplit prf) (allBranchesSplit fresh prfs) (const $ allBranchesSplit fresh prfs) contras -- Synthesis and Checking are decidable fallbackCheck : SynthsOnly e -> Proof (Ty [<]) (Synths tyEnv tmEnv e) (NotSynths tyEnv tmEnv e) -> (a : Ty [<]) -> LazyEither (Checks tyEnv tmEnv a e) (NotChecks tyEnv tmEnv a e) fallbackCheck prf p a = map (\xPrf => uncurry (EmbedC prf) $ snd xPrf) (either (EmbedNC1 prf) (\xPrf => uncurry (EmbedNC2 prf) $ snd xPrf)) $ (b := p) >=> alpha b a synths : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (e : Term mode m tyCtx tmCtx) -> Proof (Ty [<]) (Synths tyEnv tmEnv e) (NotSynths tyEnv tmEnv e) export checks : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (a : Ty [<]) -> (t : Term mode m tyCtx tmCtx) -> LazyEither (Checks tyEnv tmEnv a t) (NotChecks tyEnv tmEnv a t) checkSpine : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (a : Ty [<]) -> (ts : List (Term mode m tyCtx tmCtx)) -> Proof (Ty [<]) (CheckSpine tyEnv tmEnv a ts) (NotCheckSpine tyEnv tmEnv a ts) allSynths : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (es : Context (Term mode m tyCtx tmCtx)) -> (0 fresh : AllFresh es.names) -> Proof (Subset (Row (Ty [<])) (\as => es.names = as.names)) (AllSynths tyEnv tmEnv es . Subset.fst) (AnyNotSynths tyEnv tmEnv es) allChecks : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (as : Context (Ty [<])) -> (ts : Context (Term mode m tyCtx tmCtx)) -> LazyEither (AllChecks tyEnv tmEnv as ts) (AnyNotChecks tyEnv tmEnv as ts) allBranches : (tyEnv : All (Assoc0 $ Ty [<]) tyCtx) -> (tmEnv : All (Assoc0 $ Ty [<]) tmCtx) -> (as : Context (Ty [<])) -> (a : Ty [<]) -> (ts : Context (x ** Term mode m tyCtx (tmCtx :< x))) -> LazyEither (AllBranches tyEnv tmEnv as a ts) (AnyNotBranches tyEnv tmEnv as a ts) synths tyEnv tmEnv (Annot _ t a) = pure (sub tyEnv a) $ map (uncurry AnnotS) AnnotNS $ all (wellFormed a) (checks tyEnv tmEnv (sub tyEnv a) t) synths tyEnv tmEnv (Var _ i) = Just (indexAll i.pos tmEnv).value `Because` VarS synths tyEnv tmEnv (Let _ e (x ** f)) = map snd (\(_, _), (prf1, prf2) => LetS prf1 prf2) (either LetNS1 (\xPrfs => uncurry LetNS2 (snd xPrfs))) $ (a := synths tyEnv tmEnv e) >=> synths tyEnv (tmEnv :< (x :- a)) f synths tyEnv tmEnv (LetTy _ a (x ** e)) = map id (\_, (wf, prf) => LetTyS wf prf) LetTyNS $ all (wellFormed a) (synths (tyEnv :< (x :- sub tyEnv a)) tmEnv e) synths tyEnv tmEnv (Abs _ (bound ** t)) = Nothing `Because` ChecksNS Abs synths tyEnv tmEnv (App _ e ts) = map snd (\(_, _), (prf1, prf2) => AppS prf1 prf2) (either AppNS1 (\xPrfs => uncurry AppNS2 (snd xPrfs))) $ (a := synths tyEnv tmEnv e) >=> checkSpine tyEnv tmEnv a ts synths tyEnv tmEnv (Tup _ (MkRow es fresh)) = map (TProd . fst) (\_ => TupS) TupNS $ allSynths tyEnv tmEnv es fresh synths tyEnv tmEnv (Prj meta e l) = map (snd . snd) true false $ (a := synths tyEnv tmEnv e) >=> (as := isProd a) >=> decLookup l as.context where true : (x : (Ty [<], Row (Ty [<]), Ty [<])) -> (Synths tyEnv tmEnv e (fst x), uncurry (\x, yz => (x = TProd (fst yz), uncurry (\y,z => Elem (l :- z) y.context) yz)) x) -> Synths tyEnv tmEnv (Prj meta e l) (snd $ snd x) true (.(TProd as), as, a) (prf, Refl, i) = PrjS prf i false : Either (NotSynths tyEnv tmEnv e) (a : Ty [<] ** (Synths tyEnv tmEnv e a, Either ((as : Row (Ty [<])) -> Not (a = TProd as)) (as : Row (Ty [<]) ** (a = TProd as, (b : Ty [<]) -> Not (Elem (l :- b) as.context))))) -> NotSynths tyEnv tmEnv (Prj meta e l) false (Left contra) = PrjNS1 contra false (Right (a ** (prf1, Left contra))) = PrjNS2 prf1 contra false (Right (.(TProd as) ** (prf1, Right (as ** (Refl, contra))))) = PrjNS3 prf1 contra synths tyEnv tmEnv (Inj _ l t) = Nothing `Because` ChecksNS Inj synths tyEnv tmEnv (Case _ e (MkRow ts _)) = Nothing `Because` ChecksNS Case synths tyEnv tmEnv (Roll _ t) = Nothing `Because` ChecksNS Roll synths tyEnv tmEnv (Unroll _ e) = map f true false $ synths tyEnv tmEnv e `andThen` isFix where f : (Ty [<], (x ** Ty [ Ty [<] f (a, (x ** b)) = sub [ (Synths tyEnv tmEnv e (fst axb), uncurry (\a,xb => a = TFix xb.fst xb.snd) axb) -> Synths tyEnv tmEnv (Unroll meta e) (f axb) true (.(TFix x a), (x ** a)) (prf, Refl) = UnrollS prf false : Either (NotSynths tyEnv tmEnv e) (a ** (Synths tyEnv tmEnv e a, (x : _) -> (b : _) -> Not (a = TFix x b))) -> NotSynths tyEnv tmEnv (Unroll meta e) false (Left contra) = UnrollNS1 contra false (Right (a ** (prf, contra))) = UnrollNS2 prf contra synths tyEnv tmEnv (Fold _ e (x ** t)) = Nothing `Because` ChecksNS Fold synths tyEnv tmEnv (Map _ (x ** a) b c) = pure _ $ map (\(wf1, wf2, wf3) => MapS wf1 wf2 wf3) MapNS $ all (wellFormed (TFix x a)) (all (wellFormed b) (wellFormed c)) checks tyEnv tmEnv a (Annot meta t b) = fallbackCheck Annot (synths tyEnv tmEnv $ Annot meta t b) a checks tyEnv tmEnv a (Var meta i) = fallbackCheck Var (synths tyEnv tmEnv $ Var meta i) a checks tyEnv tmEnv a (Let _ e (x ** t)) = map (\(_ ** (prf1, prf2)) => LetC prf1 prf2) (either LetNC1 (\xPrfs => uncurry LetNC2 $ snd xPrfs)) $ (b := synths tyEnv tmEnv e) >=> checks tyEnv (tmEnv :< (x :- b)) a t checks tyEnv tmEnv a (LetTy _ b (x ** t)) = map (uncurry LetTyC) LetTyNC $ all (wellFormed b) (checks (tyEnv :< (x :- sub tyEnv b)) tmEnv a t) checks tyEnv tmEnv a (Abs meta (bound ** t)) = map (\((_, _) ** (prf1, prf2)) => AbsC prf1 prf2) (either AbsNC1 false) $ (domCod := isFunction bound a) >=> checks tyEnv (tmEnv <>< fst domCod) (snd domCod) t where false : (x ** (Prelude.uncurry (IsFunction bound a) x, NotChecks tyEnv (tmEnv <>< fst x) (snd x) t)) -> NotChecks tyEnv tmEnv a (Abs meta (bound ** t)) false ((_,_) ** prf) = uncurry AbsNC2 prf checks tyEnv tmEnv a (App meta f ts) = fallbackCheck App (synths tyEnv tmEnv $ App meta f ts) a checks tyEnv tmEnv a (Tup _ (MkRow ts fresh')) = map true false $ (as := isProd a) >=> allChecks tyEnv tmEnv as.context ts where true : forall a. (as : Row (Ty [<]) ** (a = TProd as, AllChecks tyEnv tmEnv as.context ts)) -> Checks tyEnv tmEnv a (Tup meta (MkRow ts fresh')) true (as ** (Refl, prf)) = TupC prf false : forall a. Either ((as : Row (Ty [<])) -> Not (a = TProd as)) (as : Row (Ty [<]) ** (a = TProd as, AnyNotChecks tyEnv tmEnv as.context ts)) -> NotChecks tyEnv tmEnv a (Tup meta (MkRow ts fresh')) false (Left contra) = TupNC1 contra false (Right (as ** (Refl, contra))) = TupNC2 contra checks tyEnv tmEnv a (Prj meta e l) = fallbackCheck Prj (synths tyEnv tmEnv $ Prj meta e l) a checks tyEnv tmEnv a (Inj _ l t) = map true false $ (as := isSum a) >=> (b := decLookup l as.context) >=> checks tyEnv tmEnv b t where true : forall a. (as ** (a = TSum as, (b ** (Elem (l :- b) as.context, Checks tyEnv tmEnv b t)))) -> Checks tyEnv tmEnv a (Inj meta l t) true (as ** (Refl, (b ** (i, prf)))) = InjC i prf false : forall a. Either ((as : _) -> Not (a = TSum as)) (as ** (a = TSum as, Either ((b : _) -> Not (Elem (l :- b) as.context)) (b ** (Elem (l :- b) as.context, NotChecks tyEnv tmEnv b t)))) -> NotChecks tyEnv tmEnv a (Inj meta l t) false (Left contra) = InjNC1 contra false (Right (as ** (Refl, Left contra))) = InjNC2 contra false (Right (as ** (Refl, Right (b ** (i, contra))))) = InjNC3 i contra checks tyEnv tmEnv a (Case _ e (MkRow ts fresh)) = map true false $ (b := synths tyEnv tmEnv e) >=> (as := isSum b) >=> allBranches tyEnv tmEnv as.context a ts where true : forall fresh. (b ** (Synths tyEnv tmEnv e b, (as ** (b = TSum as, AllBranches tyEnv tmEnv as.context a ts)))) -> Checks tyEnv tmEnv a (Case meta e (MkRow ts fresh)) true (.(TSum as) ** (prf, (as ** (Refl, prfs)))) = CaseC prf prfs false : forall fresh. Either (NotSynths tyEnv tmEnv e) (b ** (Synths tyEnv tmEnv e b, Either ((as : _) -> Not (b = TSum as)) (as ** (b = TSum as, AnyNotBranches tyEnv tmEnv as.context a ts)))) -> NotChecks tyEnv tmEnv a (Case meta e (MkRow ts fresh)) false (Left contra) = CaseNC1 contra false (Right (b ** (prf, Left contra))) = CaseNC2 prf contra false (Right (.(TSum as) ** (prf, Right (as ** (Refl, contras))))) = CaseNC3 prf contras checks tyEnv tmEnv a (Roll _ t) = map true false $ (xb := isFix a) >=> checks tyEnv tmEnv (ty xb) t where ty : (x ** Ty [ Ty [<] ty (x ** b) = sub [ Checks tyEnv tmEnv a (Roll meta t) true ((x ** b) ** (Refl, prf)) = RollC prf false : forall a. Either ((x : _) -> (b : Ty [ Not (a = TFix x b)) (xb : (x ** Ty [ NotChecks tyEnv tmEnv a (Roll meta t) false (Left contra) = RollNC1 contra false (Right ((x ** b) ** (Refl, contra))) = RollNC2 contra checks tyEnv tmEnv a (Unroll meta e) = fallbackCheck Unroll (synths tyEnv tmEnv $ Unroll meta e) a checks tyEnv tmEnv a (Fold _ e (x ** t)) = map true false $ (b := synths tyEnv tmEnv e) >=> (yc := isFix b) >=> checks tyEnv (tmEnv' yc) a t where tmEnv' : (y ** Ty [ All (Assoc0 $ Ty [<]) (tmCtx :< x) tmEnv' (y ** c) = tmEnv :< (x :- sub [ Checks tyEnv tmEnv a (Fold meta e (x ** t)) true (.(TFix y b) ** (prf1, ((y ** b) ** (Refl, prf2)))) = FoldC prf1 prf2 false : Either (NotSynths tyEnv tmEnv e) (b ** (Synths tyEnv tmEnv e b, Either ((y : _) -> (c : Ty [ Not (b = TFix y c)) (yc ** (b = TFix (fst yc) (snd yc), NotChecks tyEnv (tmEnv' yc) a t)))) -> NotChecks tyEnv tmEnv a (Fold meta e (x ** t)) false (Left contra) = FoldNC1 contra false (Right (b ** (prf1, Left contra))) = FoldNC2 prf1 contra false (Right (.(TFix y b) ** (prf1, Right ((y ** b) ** (Refl, contra))))) = FoldNC3 prf1 contra checks tyEnv tmEnv a (Map meta (x ** b) c d) = fallbackCheck Map (synths tyEnv tmEnv $ Map meta (x ** b) c d) a checkSpine tyEnv tmEnv a [] = Just a `Because` [] checkSpine tyEnv tmEnv a (t :: ts) = map snd true false $ (bc := isArrow a) >=> all (checks tyEnv tmEnv (fst bc) t) (checkSpine tyEnv tmEnv (snd bc) ts) where true : forall a. (bcd : ((Ty [<], Ty [<]), Ty [<])) -> ( a = TArrow (fst $ fst bcd) (snd $ fst bcd) , uncurry (\bc,d => (Checks tyEnv tmEnv (fst bc) t, CheckSpine tyEnv tmEnv (snd bc) ts d)) bcd) -> CheckSpine tyEnv tmEnv a (t :: ts) (snd bcd) true ((b, c), d) (Refl, (prf1, prf2)) = prf1 :: prf2 false : forall a. Either ((b, c : Ty [<]) -> Not (a = TArrow b c)) (bc : (Ty [<], Ty [<]) ** (a = TArrow (fst bc) (snd bc), These (NotChecks tyEnv tmEnv (fst bc) t) (NotCheckSpine tyEnv tmEnv (snd bc) ts))) -> NotCheckSpine tyEnv tmEnv a (t :: ts) false (Left contra) = Step1 contra false (Right ((b, c) ** (Refl, contras))) = Step2 contras allSynths tyEnv tmEnv [<] [<] = Just (Element [<] Refl) `Because` [<] allSynths tyEnv tmEnv (es :< (l :- e)) (fresh :< freshIn) = map (\(a, Element as eq) => Element ((:<) as (l :- a) @{rewrite sym eq in freshIn}) (cong (:< l) eq)) (\(a, Element as eq), (prf, prfs) => (:<) prfs prf @{rewrite sym eq in freshIn}) Step $ all (synths tyEnv tmEnv e) (allSynths tyEnv tmEnv es fresh) allChecks tyEnv tmEnv [<] [<] = True `Because` Base allChecks tyEnv tmEnv (as :< la) [<] = False `Because` Base1 allChecks tyEnv tmEnv as (ts :< (l :- t)) = map (\((a ** i) ** (prf, prfs)) => Step i prf prfs) (either Step1 (\xPrf => Step2 (snd $ fst xPrf) (snd xPrf))) $ (ai := (decLookup l as).forget) >=> all (checks tyEnv tmEnv (fst ai) t) (allChecks tyEnv tmEnv (dropElem as $ snd ai) ts) allBranches tyEnv tmEnv [<] b [<] = True `Because` Base allBranches tyEnv tmEnv (as :< la) b [<] = False `Because` Base1 allBranches tyEnv tmEnv as b (ts :< (l :- (x ** t))) = map (\((a ** i) ** (prf, prfs)) => Step i prf prfs) (either Step1 (\xPrf => Step2 (snd $ fst xPrf) (snd xPrf))) $ (ai := (decLookup l as).forget) >=> all (checks tyEnv (tmEnv :< (x :- fst ai)) b t) (allBranches tyEnv tmEnv (dropElem as $ snd ai) b ts)