summaryrefslogtreecommitdiff
path: root/src/Data/List
diff options
context:
space:
mode:
Diffstat (limited to 'src/Data/List')
-rw-r--r--src/Data/List/Relation/Binary/Prefix.agda118
-rw-r--r--src/Data/List/Relation/Binary/Suffix.agda73
2 files changed, 191 insertions, 0 deletions
diff --git a/src/Data/List/Relation/Binary/Prefix.agda b/src/Data/List/Relation/Binary/Prefix.agda
new file mode 100644
index 0000000..84d8e03
--- /dev/null
+++ b/src/Data/List/Relation/Binary/Prefix.agda
@@ -0,0 +1,118 @@
+module Data.List.Relation.Binary.Prefix where
+
+open import Data.Empty using (⊥-elim)
+open import Data.List.Base using (List; []; _∷_; _++_; length; inits; map)
+open import Data.List.Properties using (length-++)
+open import Data.List.Relation.Binary.Pointwise using (Pointwise; []; _∷_; setoid)
+open import Data.List.Relation.Unary.All as All using (All; []; _∷_)
+open import Data.Nat using (_≤_; z≤n; s≤s; _+_) renaming (_<_ to _<ⁿ_)
+open import Data.Nat.Properties using (<⇒≱; m<m+n; module ≤-Reasoning)
+open import Data.Product using (_,_; uncurry)
+open import Function.Equivalence using (_⇔_; equivalence)
+open import Level using (Level; _⊔_)
+open import Relation.Binary
+open import Relation.Nullary using (Dec; yes; no; ¬_)
+import Relation.Nullary.Decidable as Dec
+open import Relation.Nullary.Product using (_×-dec_)
+open import Relation.Unary using (Pred)
+
+private
+ variable
+ a ℓ : Level
+
+module _
+ {A : Set a} (P : Set) (_≈_ : Rel A ℓ)
+ where
+
+ data Prefix : Rel (List A) ℓ where
+ base : P → Prefix [] []
+ halt : ∀ {y ys} → Prefix [] (y ∷ ys)
+ next : ∀ {x xs y ys}
+ (x≈y : x ≈ y) (xs<ys : Prefix xs ys) → Prefix (x ∷ xs) (y ∷ ys)
+
+module _
+ {A : Set a} {P : Set} {_≈_ : Rel A ℓ}
+ where
+
+ private
+ _≋_ = Pointwise _≈_
+ _<_ = Prefix P _≈_
+
+ initsPrefixes : P → Reflexive _≈_ → ∀ xs → All (_< xs) (inits xs)
+ initsPrefixes p refl [] = base p ∷ []
+ initsPrefixes p refl (x ∷ xs) = halt ∷ map′ (x ∷_ ) (next refl) (initsPrefixes p refl xs)
+ where
+ map′ : ∀ {a b p q} {A : Set a} {B : Set b} {P : Pred A p} {Q : Pred B q} →
+ (f : A → B) → (∀ {x} → P x → Q (f x)) → ∀ {xs} → All P xs → All Q (map f xs)
+ map′ f pres [] = []
+ map′ f pres (px ∷ pxs) = pres px ∷ map′ f pres pxs
+
+ module _
+ (equivalence : IsEquivalence _≈_)
+ where
+
+ open IsEquivalence equivalence
+ open import Data.List.Membership.Setoid (setoid (record { isEquivalence = equivalence })) using (_∈_)
+ open import Data.List.Relation.Unary.Any using (Any; here; there)
+
+ prefix∈inits : ∀ {xs ys} → xs < ys → xs ∈ inits ys
+ prefix∈inits (base x) = here []
+ prefix∈inits halt = here []
+ prefix∈inits (next x≈y xs<ys) = there (map′ (_∷_ _) (x≈y ∷_) (prefix∈inits xs<ys))
+ where
+ map′ : ∀ {a b p q} {A : Set a} {B : Set b} {P : Pred A p} {Q : Pred B q} →
+ (f : A → B) → (∀ {x} → P x → Q (f x)) → ∀ {xs} → Any P xs → Any Q (map f xs)
+ map′ f pres (here px) = here (pres px)
+ map′ f pres (there pxs) = there (map′ f pres pxs)
+
+ reflexive : P → Reflexive _≈_ → Reflexive _<_
+ reflexive p refl {[]} = base p
+ reflexive p refl {x ∷ xs} = next refl (reflexive p refl)
+
+ irreflexive : ¬ P → Irreflexive _≋_ _<_
+ irreflexive ¬p [] (base p) = ¬p p
+ irreflexive ¬p (_ ∷ xs≋ys) (next _ xs<ys) = irreflexive ¬p xs≋ys xs<ys
+
+ transitive : Transitive _≈_ → Transitive _<_
+ transitive trans (base _) ys<zs = ys<zs
+ transitive trans halt (next _ _) = halt
+ transitive trans (next x≈y xs<ys) (next y≈z ys<zs) =
+ next (trans x≈y y≈z) (transitive trans xs<ys ys<zs)
+
+ antisymmetric : Symmetric _≈_ → Antisymmetric _≋_ _<_
+ antisymmetric sym (base _) (base _) = []
+ antisymmetric sym (next x≈y xs<ys) (next y≈x ys<xs) =
+ x≈y ∷ antisymmetric sym xs<ys ys<xs
+
+ decidable : Dec P → Decidable _≈_ → Decidable _<_
+ decidable P? _≈?_ [] [] = Dec.map′ base (λ { (base p) → p }) P?
+ decidable P? _≈?_ [] (x ∷ ys) = yes halt
+ decidable P? _≈?_ (x ∷ xs) [] = no λ ()
+ decidable P? _≈?_ (x ∷ xs) (y ∷ ys) =
+ Dec.map′ (uncurry next)
+ (λ { (next x≈y xs<ys) → x≈y , xs<ys })
+ ((x ≈? y) ×-dec (decidable P? _≈?_ xs ys))
+
+ length≤ : ∀ {xs} {ys} → xs < ys → length xs ≤ length ys
+ length≤ (base x) = z≤n
+ length≤ halt = z≤n
+ length≤ (next x≈y xs<ys) = s≤s (length≤ xs<ys)
+
+ length< : ∀ {xs} {ys} → ¬ P → xs < ys → length xs <ⁿ length ys
+ length< ¬p (base p) = ⊥-elim (¬p p)
+ length< ¬p halt = s≤s z≤n
+ length< ¬p (next x≈y xs<ys) = s≤s (length< ¬p xs<ys)
+
+ minimum : P → Minimum _<_ []
+ minimum p [] = base p
+ minimum p (x ∷ xs) = halt
+
+ ¬maximum : A → ∀ xs → ¬ Maximum _<_ xs
+ ¬maximum a xs max =
+ <⇒≱
+ (begin-strict
+ length xs <⟨ m<m+n (length xs) (s≤s z≤n) ⟩
+ length xs + length (a ∷ []) ≡˘⟨ length-++ xs ⟩
+ length (xs ++ a ∷ []) ∎)
+ (length≤ (max (xs ++ a ∷ [])))
+ where open ≤-Reasoning
diff --git a/src/Data/List/Relation/Binary/Suffix.agda b/src/Data/List/Relation/Binary/Suffix.agda
new file mode 100644
index 0000000..6b41a67
--- /dev/null
+++ b/src/Data/List/Relation/Binary/Suffix.agda
@@ -0,0 +1,73 @@
+module Data.List.Relation.Binary.Suffix where
+
+open import Data.Bool using (true; false; _∧_; _∨_)
+open import Data.Empty using (⊥-elim)
+open import Data.List using (List; []; _∷_; length)
+open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; []; _∷_; setoid)
+open import Data.Nat using (suc; _≤_; z≤n; s≤s)
+open import Data.Nat.Properties using (n<1+n; ≤-step; <⇒≱; module ≤-Reasoning)
+open import Data.Sum using (inj₁; inj₂; [_,_])
+open import Level using (Level; _⊔_)
+open import Relation.Binary
+open import Relation.Nullary using (yes; no; ¬_)
+import Relation.Nullary.Decidable as Dec
+open import Relation.Nullary.Sum using (_⊎-dec_)
+
+private
+ variable
+ a ℓ : Level
+
+module _
+ {A : Set a} (_≈_ : Rel A ℓ)
+ where
+
+ data Suffix : Rel (List A) (a ⊔ ℓ) where
+ base : ∀ {xs ys} → (xs≋ys : Pointwise _≈_ xs ys) → Suffix xs ys
+ next : ∀ y {xs ys} → Suffix xs ys → Suffix xs (y ∷ ys)
+
+module _
+ {A : Set a} {_≈_ : Rel A ℓ}
+ where
+
+ private
+ _≋_ = Pointwise _≈_
+ _<_ = Suffix _≈_
+
+ length≤ : ∀ {xs ys} → xs < ys → length xs ≤ length ys
+ length≤ (base []) = z≤n
+ length≤ (base (x∼y ∷ xs≋ys)) = s≤s (length≤ (base xs≋ys))
+ length≤ (next y xs<ys) = ≤-step (length≤ xs<ys)
+
+ refl : Reflexive _≈_ → Reflexive _<_
+ refl refl {xs} = base (Pointwise.refl refl)
+
+ transitive : Transitive _≈_ → Transitive _<_
+ transitive trans xs<ys (next z ys<zs) = next z (transitive trans xs<ys ys<zs)
+ transitive trans (base xs≋ys) (base ys≋zs) = base (Pointwise.transitive trans xs≋ys ys≋zs)
+ transitive trans (next y xs<ys) (base (y∼z ∷ ys≋zs)) = next _ (transitive trans xs<ys (base ys≋zs))
+
+ antisymmetric : Symmetric _≈_ → Antisymmetric _≋_ _<_
+ antisymmetric sym (base xs≋ys) _ = xs≋ys
+ antisymmetric sym (next _ _) (base ys≋xs) = Pointwise.symmetric sym ys≋xs
+ antisymmetric sym (next y {x ∷ xs} {ys} x∷xs<ys) (next x y∷ys<xs) =
+ ⊥-elim
+ (<⇒≱ (≤-step (n<1+n (length xs)))
+ (begin
+ suc (suc (length xs)) ≡⟨⟩
+ suc (length (x ∷ xs)) ≤⟨ s≤s (length≤ x∷xs<ys) ⟩
+ suc (length ys) ≡⟨⟩
+ length (y ∷ ys) ≤⟨ length≤ y∷ys<xs ⟩
+ length xs ∎))
+ where open ≤-Reasoning
+
+ minimum : Minimum _<_ []
+ minimum [] = base []
+ minimum (x ∷ xs) = next x (minimum xs)
+
+ decidable : Decidable _≈_ → Decidable _<_
+ decidable ≈? [] ys = yes (minimum ys)
+ decidable ≈? (x ∷ xs) [] = no (λ { (base ()) })
+ decidable ≈? (x ∷ xs) (y ∷ ys) =
+ Dec.map′ [ base , next y ]
+ (λ { (base xs≋ys) → inj₁ xs≋ys ; (next _ xs<ys) → inj₂ xs<ys })
+ (Pointwise.decidable ≈? (x ∷ xs) (y ∷ ys) ⊎-dec decidable ≈? (x ∷ xs) ys)