module Data.Fin.Occurs import Data.DPair import Data.Fin import Data.Maybe.Properties -- Utilities ------------------------------------------------------------------- predInjective : {n : Nat} -> pred n = S k -> n = S (S k) predInjective {n = S n} prf = cong S prf indexIsSuc : Fin n -> Exists (\k => n = S k) indexIsSuc FZ = Evidence _ Refl indexIsSuc (FS x) = Evidence _ Refl %inline %tcinline zero : (0 _ : Fin n) -> Fin n zero x = rewrite snd (indexIsSuc x) in FZ %inline %tcinline suc : (_ : Fin (pred n)) -> Fin n suc x = replace {p = Fin} (sym $ predInjective $ snd $ indexIsSuc x) (FS $ rewrite sym $ snd $ indexIsSuc x in x) -- Thinning -------------------------------------------------------------------- export thin : Fin n -> Fin (pred n) -> Fin n thin FZ y = FS y thin (FS x) FZ = FZ thin (FS x) (FS y) = FS (thin x y) -- Properties export thinInjective : (x : Fin n) -> {y, z : Fin (pred n)} -> thin x y = thin x z -> y = z thinInjective FZ prf = injective prf thinInjective (FS x) {y = FZ, z = FZ} prf = Refl thinInjective (FS x) {y = FS y, z = FS z} prf = cong FS $ thinInjective x $ injective prf export thinSkips : (x : Fin n) -> (y : Fin (pred n)) -> Not (thin x y = x) thinSkips (FS x) (FS y) prf = thinSkips x y (injective prf) thinSucZero : (x : Fin n) -> thin (FS x) (zero x) = FZ thinSucZero FZ = Refl thinSucZero (FS x) = Refl thinSucSuc : (x : Fin n) -> (z : Fin (pred n)) -> thin (FS x) (suc z) = FS (thin x z) thinSucSuc FZ FZ = Refl thinSucSuc FZ (FS x) = Refl thinSucSuc (FS x) FZ = Refl thinSucSuc (FS x) (FS y) = Refl export thinInverse : (x, y : Fin n) -> Not (x = y) -> (z ** thin x z = y) thinInverse FZ FZ neq = void (neq Refl) thinInverse FZ (FS y) neq = (y ** Refl) thinInverse (FS x) FZ neq = (zero x ** thinSucZero x) thinInverse (FS x) (FS y) neq = let (z ** prf) = thinInverse x y (\eq => neq $ cong FS eq) in (suc z ** trans (thinSucSuc x z) (cong FS prf)) -- Thickening ------------------------------------------------------------------ export thick : Fin n -> Fin n -> Maybe (Fin (pred n)) thick FZ FZ = Nothing thick FZ (FS y) = Just y thick (FS x) FZ = Just (zero x) thick (FS x) (FS y) = [| suc (thick x y) |] export thickIsNothing : (x, y : Fin n) -> (x = y) <=> (thick x y = Nothing) thickIsNothing FZ FZ = MkEquivalence (const Refl) (const Refl) thickIsNothing FZ (FS y) = MkEquivalence absurd absurd thickIsNothing (FS x) FZ = MkEquivalence absurd absurd thickIsNothing (FS x) (FS y) = let rec = thickIsNothing x y in MkEquivalence (cong (Just suc <*>) . rec.leftToRight . injective) (cong FS . rec.rightToLeft . appNothingRight suc (thick x y)) export thickIsJust : (x, y : Fin n) -> Not (x = y) <=> (z ** (thick x y = Just z, thin x z = y)) thickIsJust FZ FZ = MkEquivalence (\f => absurd $ f Refl) (\p => absurd $ fst $ snd p) thickIsJust FZ (FS y) = MkEquivalence (const (y ** (Refl, Refl))) (const absurd) thickIsJust (FS x) FZ = MkEquivalence (const (zero x ** (Refl, thinSucZero x))) (const absurd) thickIsJust (FS x) (FS y) = let rec = thickIsJust x y in MkEquivalence (\neq => let (z ** (prf1, prf2)) = rec.leftToRight (neq . cong FS) in (suc z ** (rewrite prf1 in Refl, trans (thinSucSuc x z) (cong FS prf2)))) (\(z ** (prf1, prf2)), prf => thinSkips (FS x) z $ trans prf2 (sym prf))