1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
module Problem12 where
open import Axiom.UniquenessOfIdentityProofs using (UIP; module Decidable⇒UIP)
open import Data.Bool hiding (_≟_)
open import Data.Empty using (⊥-elim)
open import Data.Fin hiding (_+_)
import Data.Fin.Properties as Fin
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Membership.Propositional.Properties
open import Data.List.Properties
open import Data.List.Relation.Unary.Any using (here; there; satisfied)
open import Data.Nat using (ℕ;zero;suc;_*_; _+_)
open import Data.Nat.Properties hiding (_≟_)
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Function.Base using (_∘′_)
open import Function.Bundles using (Injection; _↣_; _↔_; mk↣; mk↔′)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
-- copied in here because latest stable stdlib doesn't have it??
_⊎-dec_ : ∀{A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
does (a? ⊎-dec b?) = does a? ∨ does b?
proof (a? ⊎-dec b?) with proof a?
... | ofʸ p = ofʸ (inj₁ p)
... | ofⁿ ¬p with proof b?
... | ofʸ p = ofʸ (inj₂ p)
... | ofⁿ ¬p₁ = ofⁿ (λ { (inj₁ q) → ¬p q; (inj₂ q) → ¬p₁ q })
sum-0 : ∀ n → sum (tabulate {n = n} (λ _ → 0)) ≡ 0
sum-0 zero = refl
sum-0 (suc n) = sum-0 n
record DisjointPair (A : Set) : Set where
field
from : A
to : A
diff : from ≢ to
record MultiGraph : Set where
field
#V : ℕ
Vertex = Fin #V
Edge = DisjointPair Vertex
field
E : List Edge
V : List (Vertex)
V = allFin #V
VertexUIP : UIP Vertex
VertexUIP = Decidable⇒UIP.≡-irrelevant _≟_
Connects : Vertex → Edge → Set
Connects v e = DisjointPair.from e ≡ v ⊎ DisjointPair.to e ≡ v
connects : (v : Vertex) → (e : Edge) → Dec (Connects v e)
connects v e = (DisjointPair.from e ≟ v) ⊎-dec (DisjointPair.to e ≟ v)
connects′ : (e : Edge) → (v : Vertex) → Dec (Connects v e)
connects′ e v = connects v e
degree′ : (E : List Edge) → Vertex → ℕ
degree′ E v = length (filter (connects v) E)
degree = degree′ E
open ≡-Reasoning
degree-split′ :
(e : Edge) (E : List Edge) (v : Vertex) →
degree′ (e ∷ E) v ≡ degree′ (e ∷ []) v + degree′ E v
degree-split′ e E v with does (connects v e)
... | false = refl
... | true = refl
degree-split :
(e : Edge) (E : List Edge) (V : List Vertex) →
sum (map (degree′ (e ∷ E)) V) ≡ sum (map (degree′ (e ∷ [])) V) + sum (map (degree′ E) V)
degree-split e E [] = refl
degree-split e E (v ∷ V) = begin
degree′ (e ∷ E) v + sum (map (degree′ (e ∷ E)) V) ≡⟨ cong₂ _+_ {x = degree′ (e ∷ E) v} {y = degree′ (e ∷ []) v + degree′ E v} (degree-split′ e E v) (degree-split e E V) ⟩
(degree′ (e ∷ []) v + degree′ E v) + (sum (map (degree′ (e ∷ [])) V) + sum (map (degree′ E) V)) ≡˘⟨ +-assoc (degree′ (e ∷ []) v + degree′ E v) (sum (map (degree′ (e ∷ [])) V)) (sum (map (degree′ E) V)) ⟩
degree′ (e ∷ []) v + degree′ E v + sum (map (degree′ (e ∷ [])) V) + sum (map (degree′ E) V) ≡⟨ cong (_+ sum (map (degree′ E) V)) (+-assoc (degree′ (e ∷ []) v) (degree′ E v) (sum (map (degree′ (e ∷ [])) V))) ⟩
degree′ (e ∷ []) v + (degree′ E v + sum (map (degree′ (e ∷ [])) V)) + sum (map (degree′ E) V) ≡⟨ cong (λ ◌ → degree′ (e ∷ []) v + ◌ + sum (map (degree′ E) V)) (+-comm (degree′ E v) (sum (map (degree′ (e ∷ [])) V))) ⟩
degree′ (e ∷ []) v + (sum (map (degree′ (e ∷ [])) V) + degree′ E v) + sum (map (degree′ E) V) ≡˘⟨ cong (_+ sum (map (degree′ E) V)) (+-assoc (degree′ (e ∷ []) v) (sum (map (degree′ (e ∷ [])) V)) (degree′ E v)) ⟩
degree′ (e ∷ []) v + sum (map (degree′ (e ∷ [])) V) + degree′ E v + sum (map (degree′ E) V) ≡⟨ +-assoc (degree′ (e ∷ []) v + sum (map (degree′ (e ∷ [])) V)) (degree′ E v) (sum (map (degree′ E) V)) ⟩
(degree′ (e ∷ []) v + sum (map (degree′ (e ∷ [])) V)) + (degree′ E v + sum (map (degree′ E) V)) ∎
degree-flip : (e : Edge) (V : List Vertex) → sum (map (degree′ (e ∷ [])) V) ≡ length (filter (connects′ e) V)
degree-flip e [] = refl
degree-flip e (v ∷ V) with does (connects v e)
... | false = degree-flip e V
... | true = cong suc (degree-flip e V)
module _ where
degree-[_]′ : (e : Edge) → (∃[ k ] k ∈ filter (connects′ e) V) ↔ Fin 2
degree-[ e ]′ = mk↔′ from to from-to to-from
where
from : ∃[ k ] k ∈ filter (connects′ e) V → Fin 2
from (k , prf) with does (DisjointPair.from e ≟ k)
... | true = zero
... | false = suc zero
to : Fin 2 → ∃[ k ] k ∈ filter (connects′ e) V
to zero = DisjointPair.from e , ∈-filter⁺ (connects′ e) (∈-allFin _) (inj₁ refl)
to (suc zero) = DisjointPair.to e , ∈-filter⁺ (connects′ e) (∈-allFin _) (inj₂ refl)
from-to : (x : Fin 2) → from (to x) ≡ x
from-to zero with DisjointPair.from e ≟ DisjointPair.from e
... | yes _ = refl
... | no x≢x = ⊥-elim (x≢x refl)
from-to (suc zero) with DisjointPair.from e ≟ DisjointPair.to e
... | yes x≡y = ⊥-elim (DisjointPair.diff e x≡y)
... | no _ = refl
open Injection using (injective) renaming (f to _⟨$⟩_)
-- The only use of axiom K
∈-tabulate-unique :
{n : ℕ} {A : Set} (uip : UIP A) (f : Fin n ↣ A) {x : A} (p q : x ∈ tabulate (f ⟨$⟩_)) → p ≡ q
∈-tabulate-unique {suc n} uip f (here p) (here q) = cong here (uip p q)
∈-tabulate-unique {suc n} uip f (here refl) (there q) = ⊥-elim (0≢1+n (cong toℕ (injective f (proj₂ (∈-tabulate⁻ q)))))
∈-tabulate-unique {suc n} uip f (there p) (here refl) = ⊥-elim (0≢1+n (cong toℕ (injective f (proj₂ (∈-tabulate⁻ p)))))
∈-tabulate-unique {suc n} uip f (there p) (there q) = cong there (∈-tabulate-unique uip (mk↣ (Fin.suc-injective ∘′ injective f)) p q)
postulate
filter⁺-filter⁻ :
{A : Set} {P : A → Set} (P? : ∀ x → Dec (P x)) →
{v : A} (xs : List A) (i : v ∈ filter P? xs) →
uncurry (∈-filter⁺ P? {xs = xs}) (∈-filter⁻ P? i) ≡ i
to-from : (x : ∃[ k ] k ∈ filter (connects′ e) V) → to (from x) ≡ x
to-from (k , prf) with DisjointPair.from e ≟ k
to-from (k , prf) | yes refl with ∈-filter⁻ (connects′ e) {xs = V} prf in filter⁻-eq
... | k∈allFin , inj₁ p = cong (_ ,_) (begin
∈-filter⁺ (connects′ e) (∈-allFin _) (inj₁ refl) ≡⟨ cong (λ ◌ → ∈-filter⁺ (connects′ e) ◌ (inj₁ refl)) (∈-tabulate-unique VertexUIP (mk↣ (λ eq → eq)) _ _) ⟩
∈-filter⁺ (connects′ e) k∈allFin (inj₁ refl) ≡⟨ cong (∈-filter⁺ (connects′ e) k∈allFin ∘′ inj₁) (VertexUIP refl p) ⟩
∈-filter⁺ (connects′ e) k∈allFin (inj₁ p) ≡˘⟨ cong (uncurry (∈-filter⁺ (connects′ e))) filter⁻-eq ⟩
uncurry (∈-filter⁺ (connects′ e) {xs = V}) (∈-filter⁻ (connects′ e) prf) ≡⟨ filter⁺-filter⁻ (connects′ e) V prf ⟩
prf ∎)
... | k∈allFin , inj₂ k≡to = ⊥-elim (DisjointPair.diff e (sym k≡to))
to-from (k , prf) | no k≢from with ∈-filter⁻ (connects′ e) {xs = V} prf in filter⁻-eq
... | k∈allFin , inj₁ k≡from = ⊥-elim (k≢from k≡from)
... | k∈allFin , inj₂ refl = cong (_ ,_) (begin
∈-filter⁺ (connects′ e) (∈-allFin _) (inj₂ refl) ≡⟨ cong (λ ◌ → ∈-filter⁺ (connects′ e) ◌ (inj₂ refl)) (∈-tabulate-unique VertexUIP (mk↣ (λ eq → eq)) _ _) ⟩
∈-filter⁺ (connects′ e) k∈allFin (inj₂ refl) ≡˘⟨ cong (uncurry (∈-filter⁺ (connects′ e))) filter⁻-eq ⟩
uncurry (∈-filter⁺ (connects′ e) {xs = V}) (∈-filter⁻ (connects′ e) prf) ≡⟨ filter⁺-filter⁻ (connects′ e) V prf ⟩
prf ∎)
postulate
degree-[_] : (e : Edge) → sum (map (degree′ (e ∷ [])) V) ≡ 2
handshaking′ : (E : List Edge) → sum (map (degree′ E) V) ≡ 2 * length E
handshaking′ [] = begin
sum (map (λ i → 0) V) ≡⟨ cong sum (map-tabulate {n = #V} (λ i → i) (λ _ → 0)) ⟩
sum (tabulate {n = #V} (λ i → 0)) ≡⟨ sum-0 #V ⟩
0 ∎
handshaking′ (e ∷ E) = begin
sum (map (degree′ (e ∷ E)) V) ≡⟨ degree-split e E V ⟩
sum (map (degree′ (e ∷ [])) V) + sum (map (degree′ E) V) ≡⟨ cong₂ _+_ degree-[ e ] (handshaking′ E) ⟩
2 + 2 * length E ≡˘⟨ *-distribˡ-+ 2 1 (length E) ⟩
2 * (1 + length E) ∎
handshaking : sum (map degree V) ≡ 2 * length E
handshaking = handshaking′ E
-- open import Data.Bool using (_∨_)
-- open import Data.Empty using (⊥-elim)
-- open import Data.Fin as Fin hiding (_+_)
-- import Data.Fin.Properties as Fin
-- open import Data.List as List hiding (map)
-- open import Data.List.Properties
-- open import Data.List.Relation.Binary.Pointwise as Pointwise using (Pointwise; []; _∷_)
-- import Data.List.Relation.Binary.Permutation.Setoid as Permutation
-- import Data.List.Relation.Binary.Permutation.Setoid.Properties as Permutation′
-- open import Data.Nat using (ℕ; zero; suc; s≤s; _*_; _+_)
-- open import Data.Nat.Properties hiding (_≟_)
-- open import Data.Product hiding (map)
-- open import Data.Sum hiding (map)
-- open import Data.Vec as Vec using (Vec; []; _∷_)
-- open import Function.Base using (_∘′_; _|>_)
-- open import Function.Bundles using (Injection; _↣_; mk↣)
-- -- open import Relation.Binary.Consequences u
-- open import Relation.Binary.Bundles using (Setoid)
-- open import Relation.Binary.Definitions using (Irreflexive; Trichotomous; tri<; tri≈; tri>)
-- open import Relation.Binary.PropositionalEquality
-- open import Relation.Nullary
-- -- copied in here because latest stable stdlib doesn't have it??
-- _⊎-dec_ : ∀{A B : Set} → Dec A → Dec B → Dec (A ⊎ B)
-- does (a? ⊎-dec b?) = does a? ∨ does b?
-- proof (a? ⊎-dec b?) with proof a?
-- ... | ofʸ p = ofʸ (inj₁ p)
-- ... | ofⁿ ¬p with proof b?
-- ... | ofʸ p = ofʸ (inj₂ p)
-- ... | ofⁿ ¬p₁ = ofⁿ (λ { (inj₁ q) → ¬p q; (inj₂ q) → ¬p₁ q })
-- infix 6 _⨾_⨾_
-- record DisjointPair (A : Set) : Set where
-- constructor _⨾_⨾_
-- field
-- from : A
-- to : A
-- diff : from ≢ to
-- data _≐_ {A : Set} : DisjointPair A → DisjointPair A → Set where
-- refl : ∀ {x y diff diff′} → (x ⨾ y ⨾ diff) ≐ (x ⨾ y ⨾ diff′)
-- transpose : ∀ {x y diff diff′} → (x ⨾ y ⨾ diff) ≐ (y ⨾ x ⨾ diff′)
-- ≐-setoid : (A : Set) → Setoid _ _
-- ≐-setoid A = record
-- { Carrier = DisjointPair A
-- ; _≈_ = _≐_
-- ; isEquivalence = record
-- { refl = refl
-- ; sym = (λ { refl → refl ; transpose → transpose })
-- ; trans = λ
-- { refl refl → refl
-- ; refl transpose → transpose
-- ; transpose refl → transpose
-- ; transpose transpose → refl
-- }
-- }
-- }
-- -- Variant of DisjointPair for forcing an order
-- record OrderedPair (A : Set) (_<_ : A → A → Set) : Set where
-- constructor _⨾_⨾_
-- field
-- from : A
-- to : A
-- ord : from < to
-- module Pair where
-- open DisjointPair
-- open Injection renaming (f to _⟨$⟩_)
-- map : {A B : Set} → A ↣ B → DisjointPair A → DisjointPair B
-- map f p .from = f ⟨$⟩ p .from
-- map f p .to = f ⟨$⟩ p .to
-- map f p .diff = p .diff ∘′ injective f
-- order :
-- {A : Set} {_<_ : A → A → Set} →
-- Trichotomous _≡_ _<_ → DisjointPair A → OrderedPair A _<_
-- order compare (from ⨾ to ⨾ diff) with compare from to
-- ... | tri< f<t _ _ = from ⨾ to ⨾ f<t
-- ... | tri≈ _ f≡t _ = ⊥-elim (diff f≡t)
-- ... | tri> _ _ f>t = to ⨾ from ⨾ f>t
-- forget :
-- {A : Set} {_<_ : A → A → Set} →
-- Irreflexive _≡_ _<_ → OrderedPair A _<_ → DisjointPair A
-- forget irrefl (from ⨾ to ⨾ ord) = from ⨾ to ⨾ λ eq → irrefl eq ord
-- forget∘order :
-- {A : Set} {_<_ : A → A → Set} →
-- (cmp : Trichotomous _≡_ _<_) (irrefl : Irreflexive _≡_ _<_) (p : DisjointPair A) →
-- forget irrefl (order cmp p) ≐ p
-- forget∘order cmp irrefl (from ⨾ to ⨾ diff) with cmp from to
-- ... | tri< f<t _ _ = refl
-- ... | tri≈ _ f≡t _ = ⊥-elim (diff f≡t)
-- ... | tri> _ _ f>t = transpose
-- -- Multigraphs built inductively
-- private
-- variable n : ℕ
-- Vertex : ℕ → Set
-- Vertex = Fin
-- Edge : ℕ → Set
-- Edge n = DisjointPair (Vertex n)
-- OEdge : ℕ → Set
-- OEdge n = OrderedPair (Vertex n) _<_
-- open module ↭′ n = Permutation (≐-setoid (Vertex n)) using () renaming (_↭_ to [_]_↭_)
-- open module ↭′′ {n} = Permutation (≐-setoid (Vertex n)) hiding (_↭_)
-- module ↭ {n} = Permutation′ (≐-setoid (Vertex n))
-- module Graph where
-- data Graph : ℕ → Set where
-- [] : Graph 0
-- _∷_ : Vec ℕ n → Graph n → Graph (suc n)
-- -- Empty graph
-- empty : (n : ℕ) → Graph n
-- empty zero = []
-- empty (suc n) = Vec.replicate 0 ∷ empty n
-- -- Obtain list of edges
-- edges′′ : ∀ {k} → Vec ℕ n → Vec (Vertex k) n → List (Edge (suc k))
-- edges′′ es is =
-- Vec.zipWith (λ n i → replicate n (zero ⨾ suc i ⨾ λ ())) es is |>
-- Vec.toList |>
-- concat
-- edges′ : Vec ℕ n → List (Edge (suc n))
-- edges′ es = edges′′ es (Vec.allFin _)
-- step-edges : List (Edge n) → List (Edge (suc n))
-- step-edges = List.map (Pair.map (mk↣ Fin.suc-injective))
-- edges : Graph n → List (Edge n)
-- edges [] = []
-- edges (es ∷ g) = edges′ es ++ step-edges (edges g)
-- -- Degree of a node
-- degree : Graph n → Vertex n → ℕ
-- degree (es ∷ g) zero = Vec.sum es
-- degree (es ∷ g) (suc i) = Vec.lookup es i + degree g i
-- -- Easy version of handshaking
-- Handshake : Graph n → Set
-- Handshake {n} g = sum (List.map (degree g) (allFin n)) ≡ 2 * length (edges g)
-- handshaking-empty : (n : ℕ) → Handshake (empty n)
-- handshaking-empty zero = refl
-- handshaking-empty (suc n) = {!begin
-- Vec.sum ? + sum (List.map (degree (Vec.replicate 0))) ≡⟨ ? ⟩
-- ? ∎!}
-- where open ≡-Reasoning
-- -- handshaking : (g : Graph n) → sum (List.map (degree g) (allFin n)) ≡ 2 * length (edges g)
-- -- handshaking [] = refl
-- -- handshaking (es ∷ g) = {!begin
-- -- Vec.sum es + sum (List.map (degree (es ∷ g) ))!}
-- -- where open ≡-Reasoning
-- -- Add an edge to a graph
-- infixr 5 _∷ᵉ_
-- _∷ᵉ_ : OEdge n → Graph n → Graph n
-- (zero ⨾ suc to ⨾ ord) ∷ᵉ (xs ∷ g) = xs Vec.[ to ]%= suc ∷ g
-- (suc from ⨾ suc to ⨾ s≤s ord) ∷ᵉ (xs ∷ g) = xs ∷ (from ⨾ to ⨾ ord ∷ᵉ g)
-- -- Construction from edges
-- private
-- order′ : Edge n → OEdge n
-- order′ = Pair.order Fin.<-cmp
-- forget′ : OEdge n → Edge n
-- forget′ = Pair.forget Fin.<-irrefl
-- forget′∘order′ : (e : Edge n) → forget′ (order′ e) ≐ e
-- forget′∘order′ = Pair.forget∘order Fin.<-cmp Fin.<-irrefl
-- fromEdges : List (Edge n) → Graph n
-- fromEdges es = foldr (λ e g → order′ e ∷ᵉ g) (empty _) es
-- step-edges-↭ :
-- {es es′ : List (Edge n)} →
-- [ n ] es ↭ es′ → [ suc n ] step-edges es ↭ step-edges es′
-- step-edges-↭ es↭es′ =
-- ↭.map⁺ (≐-setoid (Vertex (suc _))) (λ { refl → refl ; transpose → transpose }) es↭es′
-- edges′′⁻¹-[] : ∀ {k n} (is : Vec (Vertex n) k) → edges′′ (Vec.replicate 0) is ≡ []
-- edges′′⁻¹-[] [] = refl
-- edges′′⁻¹-[] (i ∷ is) = edges′′⁻¹-[] is
-- edges′′⁻¹-∷ : ∀ {k n} (es : Vec ℕ k) (is : Vec (Vertex n) k) (j : Fin k) →
-- [ suc n ]
-- edges′′ (es Vec.[ j ]%= suc) is
-- ↭
-- (zero ⨾ suc (Vec.lookup is j) ⨾ λ ()) ∷ edges′′ es is
-- edges′′⁻¹-∷ (e ∷ es) (i ∷ is) zero = ↭-refl
-- edges′′⁻¹-∷ (e ∷ es) (i ∷ is) (suc j) = begin
-- edges′′ (e ∷ es Vec.[ j ]%= suc) (i ∷ is) ≡⟨⟩
-- replicate e (zero ⨾ suc i ⨾ λ ()) ++ edges′′ (es Vec.[ j ]%= suc) is ↭⟨ ↭.++⁺ˡ (replicate e (zero ⨾ suc i ⨾ λ ())) (edges′′⁻¹-∷ es is j) ⟩
-- replicate e (zero ⨾ suc i ⨾ λ ()) ++ (zero ⨾ suc k ⨾ λ ()) ∷ edges′′ es is ↭⟨ ↭.↭-shift (replicate e (zero ⨾ suc i ⨾ λ ())) (edges′′ es is) ⟩
-- (zero ⨾ suc k ⨾ λ ()) ∷ replicate e (zero ⨾ suc i ⨾ λ ()) ++ edges′′ es is ≡⟨⟩
-- (zero ⨾ suc k ⨾ λ ()) ∷ edges′′ (e ∷ es) (i ∷ is) ∎
-- where
-- open PermutationReasoning
-- k = Vec.lookup is j
-- edges′⁻¹-[] : (n : ℕ) → edges′ {n} (Vec.replicate 0) ≡ []
-- edges′⁻¹-[] n = edges′′⁻¹-[] (Vec.allFin n)
-- edges′⁻¹-∷ :
-- (es : Vec ℕ n) (to : Vertex n) →
-- [ suc n ] edges′ (es Vec.[ to ]%= suc) ↭ (zero ⨾ suc to ⨾ λ ()) ∷ edges′ es
-- edges′⁻¹-∷ es to = begin
-- edges′ (es Vec.[ to ]%= suc) ↭⟨ edges′′⁻¹-∷ es (Vec.allFin _) to ⟩
-- (zero ⨾ suc (Vec.lookup (Vec.allFin _) to) ⨾ λ ()) ∷ edges′ es ≡⟨ cong (λ ◌ → (zero ⨾ suc ◌ ⨾ (λ ())) ∷ edges′ es) (Vec-lookup-tabulate (λ i → i) to) ⟩
-- (zero ⨾ suc to ⨾ λ ()) ∷ edges′ es ∎
-- where
-- open PermutationReasoning
-- Vec-lookup-tabulate :
-- {A : Set} (f : Fin n → A) (i : Fin n) → Vec.lookup (Vec.tabulate f) i ≡ f i
-- Vec-lookup-tabulate f zero = refl
-- Vec-lookup-tabulate f (suc i) = Vec-lookup-tabulate (f ∘′ suc) i
-- edges⁻¹-[] : (n : ℕ) → edges (empty n) ≡ []
-- edges⁻¹-[] zero = refl
-- edges⁻¹-[] (suc n) = cong₂ (λ ◌ᵃ ◌ᵇ → ◌ᵃ ++ step-edges ◌ᵇ) (edges′⁻¹-[] n) (edges⁻¹-[] n)
-- edges⁻¹-∷ : (e : OEdge n) (g : Graph n) → [ n ] edges (e ∷ᵉ g) ↭ forget′ e ∷ edges g
-- edges⁻¹-∷ (zero ⨾ suc to ⨾ ord) (xs ∷ g) = ↭.++⁺ʳ (step-edges (edges g)) (begin
-- edges′ (xs Vec.[ to ]%= suc) ↭⟨ edges′⁻¹-∷ xs to ⟩
-- (zero ⨾ suc to ⨾ _ ∷ edges′ xs) ≋⟨ refl ∷ Pointwise.refl refl ⟩
-- zero ⨾ suc to ⨾ _ ∷ edges′ xs ∎)
-- where open PermutationReasoning
-- edges⁻¹-∷ (suc from ⨾ suc to ⨾ s≤s ord) (xs ∷ g) = begin
-- edges′ xs ++ step-edges (edges (from ⨾ to ⨾ ord ∷ᵉ g)) ↭⟨ ↭.++⁺ˡ (edges′ xs) (step-edges-↭ (edges⁻¹-∷ (from ⨾ to ⨾ ord) g)) ⟩
-- edges′ xs ++ step-edges (from ⨾ to ⨾ diff ∷ edges g) ≡⟨⟩
-- edges′ xs ++ (suc from ⨾ suc to ⨾ _) ∷ step-edges (edges g) ↭⟨ ↭.↭-shift (edges′ xs) (step-edges (edges g)) ⟩
-- (suc from ⨾ suc to ⨾ _ ∷ edges′ xs ++ step-edges (edges g)) ≋⟨ refl ∷ Pointwise.refl refl ⟩
-- suc from ⨾ suc to ⨾ _ ∷ edges′ xs ++ step-edges (edges g) ∎
-- where
-- open PermutationReasoning
-- diff = λ eq → Fin.<-irrefl eq ord
-- edges⁻¹ : (es : List (Edge n)) → [ n ] edges (fromEdges es) ↭ es
-- edges⁻¹ [] = ↭-reflexive (edges⁻¹-[] _)
-- edges⁻¹ (e ∷ es) = begin
-- edges (order′ e ∷ᵉ fromEdges es) ↭⟨ edges⁻¹-∷ (order′ e) (fromEdges es) ⟩
-- (forget′ (order′ e) ∷ edges (fromEdges es)) ≋⟨ forget′∘order′ e ∷ Pointwise.refl refl ⟩
-- e ∷ edges (fromEdges es) <⟨ edges⁻¹ es ⟩
-- e ∷ es ∎
-- where open PermutationReasoning
-- -- Multigraphs as defined by the problem
-- -- I've rearranged the definitions to make things easier to prove
-- Connects : Vertex n → Edge n → Set
-- Connects v e = DisjointPair.from e ≡ v ⊎ DisjointPair.to e ≡ v
-- connects : (v : Vertex n) → (e : Edge n) → Dec (Connects v e)
-- connects v e = (DisjointPair.from e ≟ v) ⊎-dec (DisjointPair.to e ≟ v)
-- degree′ : (E : List (Edge n)) → Vertex n → ℕ
-- degree′ E v = length (filter (connects v) E)
-- record MultiGraph : Set where
-- field
-- #V : ℕ
-- E : List (Edge #V)
-- V : List (Vertex #V)
-- V = allFin #V
-- degree = degree′ E
-- handshaking : sum (List.map degree V) ≡ 2 * length E
-- handshaking = {!!}
|