summaryrefslogtreecommitdiff
path: root/src/Problem14.agda
blob: d6a930987ba1ce9f6a9d3fe4ea105e411e22c488 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
module Problem14 where

open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Sum
open import Data.Nat
open import Data.Nat.Properties
open import Data.List
open import Data.Bool

open ≡-Reasoning

postulate A : Set
postulate _⋆_ : A → A → A
postulate ι : A
infixl 50 _⋆_
postulate ⋆-assoc : ∀ a b c → a ⋆ (b ⋆ c) ≡ a ⋆ b ⋆ c
postulate ⋆-identityʳ : ∀ y → y ⋆ ι ≡ y
postulate ⋆-identityˡ : ∀ y → ι ⋆ y ≡ y

_⋆⋆_ : A → ℕ → A
n ⋆⋆ zero = ι
n ⋆⋆ suc k = n ⋆ (n ⋆⋆ k)

⋆⋆-homoʳ : (x : A) (n k : ℕ) → x ⋆⋆ (n + k) ≡ (x ⋆⋆ n) ⋆ (x ⋆⋆ k)
⋆⋆-homoʳ x zero    k = sym (⋆-identityˡ (x ⋆⋆ k))
⋆⋆-homoʳ x (suc n) k = begin
  x ⋆ (x ⋆⋆ (n + k))        ≡⟨ cong (x ⋆_) (⋆⋆-homoʳ x n k) ⟩
  x ⋆ ((x ⋆⋆ n) ⋆ (x ⋆⋆ k)) ≡⟨ ⋆-assoc x (x ⋆⋆ n) (x ⋆⋆ k) ⟩
  x ⋆  (x ⋆⋆ n) ⋆ (x ⋆⋆ k)  ∎

⋆⋆-comm : (x : A) (k : ℕ) → (x ⋆⋆ k) ⋆ x ≡ x ⋆ (x ⋆⋆ k)
⋆⋆-comm x k = begin
  (x ⋆⋆ k) ⋆ x        ≡˘⟨ cong ((x ⋆⋆ k) ⋆_) (⋆-identityʳ x) ⟩
  (x ⋆⋆ k) ⋆ (x ⋆⋆ 1) ≡˘⟨ ⋆⋆-homoʳ x k 1 ⟩
  x ⋆⋆ (k + 1)        ≡⟨  cong (x ⋆⋆_) (+-comm k 1) ⟩
  x ⋆⋆ (1 + k)        ∎

fromBits : List Bool → ℕ
fromBits [] = 0
fromBits (false ∷ bs) = 2 * fromBits bs
fromBits (true ∷ bs) = 1 + 2 * fromBits bs

expBySquare : A → A → List Bool → A
expBySquare y x [] = y
expBySquare y x (false ∷ n) = expBySquare y (x ⋆ x) n
expBySquare y x (true ∷ n)  = expBySquare (y ⋆ x) (x ⋆ x) n

expBySquare-homoˡ :
  (x y z : A) (n : List Bool) →
  expBySquare (x ⋆ y) z n ≡ x ⋆ expBySquare y z n
expBySquare-homoˡ x y z []          = refl
expBySquare-homoˡ x y z (false ∷ n) = expBySquare-homoˡ x y (z ⋆ z) n
expBySquare-homoˡ x y z (true  ∷ n) = begin
  expBySquare (x ⋆  y ⋆ z)  (z ⋆ z) n ≡˘⟨ cong (λ ◌ → expBySquare ◌ (z ⋆ z) n) (⋆-assoc x y z) ⟩
  expBySquare (x ⋆ (y ⋆ z)) (z ⋆ z) n ≡⟨  expBySquare-homoˡ x (y ⋆ z) (z ⋆ z) n ⟩
  x  ⋆ expBySquare (y ⋆ z)  (z ⋆ z) n ∎

-- Special case of commutativity
expBySquare-comm :
  (x : A) (k : ℕ) (n : List Bool) →
  expBySquare ι (x ⋆⋆ k) n ⋆ x ≡ expBySquare x (x ⋆⋆ k) n
expBySquare-comm x k []          = ⋆-identityˡ x
expBySquare-comm x k (false ∷ n) = begin
  expBySquare ι ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x ≡˘⟨ cong (λ ◌ → expBySquare ι ◌ n ⋆ x) (⋆⋆-homoʳ x k k) ⟩
  expBySquare ι (x ⋆⋆ (k + k))        n ⋆ x ≡⟨  expBySquare-comm x (k + k) n ⟩
  expBySquare x (x ⋆⋆ (k + k))        n     ≡⟨  cong (λ ◌ → expBySquare x ◌ n) (⋆⋆-homoʳ x k k) ⟩
  expBySquare x ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n     ∎
expBySquare-comm x k (true  ∷ n) = begin
  expBySquare (ι ⋆ (x ⋆⋆ k)) ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x  ≡⟨  cong (λ ◌ → expBySquare ◌ ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x) (⋆-identityˡ (x ⋆⋆ k)) ⟩
  expBySquare (x ⋆⋆ k)       ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x  ≡˘⟨ cong₂ (λ ◌ᵃ ◌ᵇ → expBySquare ◌ᵃ ◌ᵇ n ⋆ x) (⋆-identityʳ (x ⋆⋆ k)) (⋆⋆-homoʳ x k k) ⟩
  expBySquare ((x ⋆⋆ k) ⋆ ι) (x ⋆⋆ (k + k))        n ⋆ x  ≡⟨  cong (_⋆ x) (expBySquare-homoˡ (x ⋆⋆ k) ι (x ⋆⋆ (k + k)) n) ⟩
  (x ⋆⋆ k) ⋆   expBySquare ι (x ⋆⋆ (k + k))        n ⋆ x  ≡˘⟨ ⋆-assoc (x ⋆⋆ k) (expBySquare ι (x ⋆⋆ (k + k)) n) x ⟩
  (x ⋆⋆ k) ⋆  (expBySquare ι (x ⋆⋆ (k + k))        n ⋆ x) ≡⟨  cong ((x ⋆⋆ k) ⋆_) (expBySquare-comm x (k + k) n) ⟩
  (x ⋆⋆ k) ⋆   expBySquare x (x ⋆⋆ (k + k))        n      ≡˘⟨ expBySquare-homoˡ (x ⋆⋆ k) x (x ⋆⋆ (k + k)) n ⟩
  expBySquare ((x ⋆⋆ k) ⋆ x) (x ⋆⋆ (k + k))        n      ≡⟨  cong₂ (λ ◌ᵃ ◌ᵇ → expBySquare ◌ᵃ ◌ᵇ n) (⋆⋆-comm x k) (⋆⋆-homoʳ x k k) ⟩
  expBySquare (x ⋆ (x ⋆⋆ k)) ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n      ∎

-- Special case of homomorphism because multiplication isn't commutative
expBySquare-homoʳ :
  (x y : A) (n : List Bool) →
  expBySquare x (y ⋆ y) n ≡ expBySquare x y n ⋆ expBySquare ι y n
expBySquare-homoʳ x y []          = sym (⋆-identityʳ x)
expBySquare-homoʳ x y (false ∷ n) = expBySquare-homoʳ x (y ⋆ y) n
expBySquare-homoʳ x y (true  ∷ n) = begin
  expBySquare (x ⋆ (y ⋆ y)) (y ⋆ y ⋆ (y ⋆ y)) n                      ≡⟨ expBySquare-homoʳ (x ⋆ (y ⋆ y)) (y ⋆ y) n ⟩
  expBySquare (x ⋆ (y ⋆ y)) (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n      ≡⟨  cong (λ ◌ → expBySquare ◌ (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n) (⋆-assoc x y y) ⟩
  expBySquare ((x ⋆ y) ⋆ y) (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n      ≡⟨  cong (_⋆ expBySquare ι (y ⋆ y) n) (expBySquare-homoˡ (x ⋆ y) y (y ⋆ y) n) ⟩
  (x ⋆ y) ⋆ expBySquare y (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n        ≡˘⟨ cong (λ ◌ → x ⋆ y ⋆ expBySquare y (y ⋆ ◌) n ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ y) ⟩
  (x ⋆ y) ⋆ expBySquare y (y ⋆⋆ 2) n ⋆ expBySquare ι (y ⋆ y) n       ≡˘⟨ cong (λ ◌ → x ⋆ y ⋆ ◌ ⋆ expBySquare ι (y ⋆ y) n) (expBySquare-comm y 2 n) ⟩
  (x ⋆ y) ⋆ (expBySquare ι (y ⋆⋆ 2) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n ≡⟨  cong (λ ◌ → x ⋆ y ⋆ (expBySquare ι (y ⋆ ◌) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ y) ⟩
  (x ⋆ y) ⋆ (expBySquare ι (y ⋆ y) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n  ≡⟨  cong (_⋆ expBySquare ι (y ⋆ y) n) (⋆-assoc (x ⋆ y) (expBySquare ι (y ⋆ y) n) y) ⟩
  (x ⋆ y) ⋆ expBySquare ι (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n    ≡˘⟨ cong (λ ◌ → ◌ ⋆ y ⋆ expBySquare ι (y ⋆ y) n) (expBySquare-homoˡ (x ⋆ y) ι (y ⋆ y) n) ⟩
  expBySquare ((x ⋆ y) ⋆ ι) (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n  ≡⟨  cong (λ ◌ → expBySquare ◌ (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ (x ⋆ y)) ⟩
  expBySquare (x ⋆ y) (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n        ≡˘⟨ ⋆-assoc (expBySquare (x ⋆ y) (y ⋆ y) n) y (expBySquare ι (y ⋆ y) n) ⟩
  expBySquare (x ⋆ y) (y ⋆ y) n ⋆ (y ⋆ expBySquare ι (y ⋆ y) n)      ≡˘⟨ cong (expBySquare (x ⋆ y) (y ⋆ y) n ⋆_) (expBySquare-homoˡ y ι (y ⋆ y) n) ⟩
  expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare (y ⋆ ι) (y ⋆ y) n      ≡⟨  cong (λ ◌ → expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare ◌ (y ⋆ y) n) (⋆-identityʳ y) ⟩
  expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare y       (y ⋆ y) n      ≡˘⟨ cong (λ ◌ → expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare ◌ (y ⋆ y) n) (⋆-identityˡ y) ⟩
  expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare (ι ⋆ y) (y ⋆ y) n      ∎

_⋆⋆ᵇ_ : A → List Bool → A
x ⋆⋆ᵇ n = expBySquare ι x n

⋆⋆ᵇ-homoˡ : (x : A) (n : List Bool) → (x ⋆ x) ⋆⋆ᵇ n ≡ (x ⋆⋆ᵇ n) ⋆ (x ⋆⋆ᵇ n)
⋆⋆ᵇ-homoˡ x n = expBySquare-homoʳ ι x n

proof-lemma : ∀ x n → x ⋆⋆ᵇ n ≡ x ⋆⋆ fromBits n → (x ⋆ x) ⋆⋆ᵇ n ≡ x ⋆⋆ (2 * fromBits n)
proof-lemma x n prf = begin
  (x ⋆ x) ⋆⋆ᵇ n                         ≡⟨  ⋆⋆ᵇ-homoˡ x n ⟩
  (x ⋆⋆ᵇ n)         ⋆ (x ⋆⋆ᵇ n)         ≡⟨  cong₂ _⋆_ prf prf ⟩
  (x ⋆⋆ fromBits n) ⋆ (x ⋆⋆ fromBits n) ≡˘⟨ ⋆⋆-homoʳ x (fromBits n) (fromBits n) ⟩
  x ⋆⋆ (fromBits n + fromBits n)        ≡˘⟨ cong (λ ◌ → x ⋆⋆ (fromBits n + ◌)) (+-identityʳ (fromBits n)) ⟩
  x ⋆⋆ (2 * fromBits n)                 ∎

proof : ∀ n k → n ⋆⋆ᵇ k ≡ n ⋆⋆ (fromBits k)
proof x []          = refl
proof x (false ∷ n) = proof-lemma x n (proof x n)
proof x (true  ∷ n) = begin
  expBySquare (ι ⋆ x) (x ⋆ x) n ≡⟨  cong (λ ◌ → expBySquare ◌ (x ⋆ x) n) (⋆-identityˡ x) ⟩
  expBySquare x       (x ⋆ x) n ≡˘⟨ cong (λ ◌ → expBySquare ◌ (x ⋆ x) n) (⋆-identityʳ x) ⟩
  expBySquare (x ⋆ ι) (x ⋆ x) n ≡⟨  expBySquare-homoˡ x ι (x ⋆ x) n ⟩
  x ⋆ ((x ⋆ x) ⋆⋆ᵇ n)           ≡⟨  cong (x ⋆_) (proof-lemma x n (proof x n)) ⟩
  x ⋆ (x ⋆⋆ (2 * fromBits n))   ∎