blob: d6a930987ba1ce9f6a9d3fe4ea105e411e22c488 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
module Problem14 where
open import Relation.Binary.PropositionalEquality
open import Data.Product
open import Data.Sum
open import Data.Nat
open import Data.Nat.Properties
open import Data.List
open import Data.Bool
open ≡-Reasoning
postulate A : Set
postulate _⋆_ : A → A → A
postulate ι : A
infixl 50 _⋆_
postulate ⋆-assoc : ∀ a b c → a ⋆ (b ⋆ c) ≡ a ⋆ b ⋆ c
postulate ⋆-identityʳ : ∀ y → y ⋆ ι ≡ y
postulate ⋆-identityˡ : ∀ y → ι ⋆ y ≡ y
_⋆⋆_ : A → ℕ → A
n ⋆⋆ zero = ι
n ⋆⋆ suc k = n ⋆ (n ⋆⋆ k)
⋆⋆-homoʳ : (x : A) (n k : ℕ) → x ⋆⋆ (n + k) ≡ (x ⋆⋆ n) ⋆ (x ⋆⋆ k)
⋆⋆-homoʳ x zero k = sym (⋆-identityˡ (x ⋆⋆ k))
⋆⋆-homoʳ x (suc n) k = begin
x ⋆ (x ⋆⋆ (n + k)) ≡⟨ cong (x ⋆_) (⋆⋆-homoʳ x n k) ⟩
x ⋆ ((x ⋆⋆ n) ⋆ (x ⋆⋆ k)) ≡⟨ ⋆-assoc x (x ⋆⋆ n) (x ⋆⋆ k) ⟩
x ⋆ (x ⋆⋆ n) ⋆ (x ⋆⋆ k) ∎
⋆⋆-comm : (x : A) (k : ℕ) → (x ⋆⋆ k) ⋆ x ≡ x ⋆ (x ⋆⋆ k)
⋆⋆-comm x k = begin
(x ⋆⋆ k) ⋆ x ≡˘⟨ cong ((x ⋆⋆ k) ⋆_) (⋆-identityʳ x) ⟩
(x ⋆⋆ k) ⋆ (x ⋆⋆ 1) ≡˘⟨ ⋆⋆-homoʳ x k 1 ⟩
x ⋆⋆ (k + 1) ≡⟨ cong (x ⋆⋆_) (+-comm k 1) ⟩
x ⋆⋆ (1 + k) ∎
fromBits : List Bool → ℕ
fromBits [] = 0
fromBits (false ∷ bs) = 2 * fromBits bs
fromBits (true ∷ bs) = 1 + 2 * fromBits bs
expBySquare : A → A → List Bool → A
expBySquare y x [] = y
expBySquare y x (false ∷ n) = expBySquare y (x ⋆ x) n
expBySquare y x (true ∷ n) = expBySquare (y ⋆ x) (x ⋆ x) n
expBySquare-homoˡ :
(x y z : A) (n : List Bool) →
expBySquare (x ⋆ y) z n ≡ x ⋆ expBySquare y z n
expBySquare-homoˡ x y z [] = refl
expBySquare-homoˡ x y z (false ∷ n) = expBySquare-homoˡ x y (z ⋆ z) n
expBySquare-homoˡ x y z (true ∷ n) = begin
expBySquare (x ⋆ y ⋆ z) (z ⋆ z) n ≡˘⟨ cong (λ ◌ → expBySquare ◌ (z ⋆ z) n) (⋆-assoc x y z) ⟩
expBySquare (x ⋆ (y ⋆ z)) (z ⋆ z) n ≡⟨ expBySquare-homoˡ x (y ⋆ z) (z ⋆ z) n ⟩
x ⋆ expBySquare (y ⋆ z) (z ⋆ z) n ∎
-- Special case of commutativity
expBySquare-comm :
(x : A) (k : ℕ) (n : List Bool) →
expBySquare ι (x ⋆⋆ k) n ⋆ x ≡ expBySquare x (x ⋆⋆ k) n
expBySquare-comm x k [] = ⋆-identityˡ x
expBySquare-comm x k (false ∷ n) = begin
expBySquare ι ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x ≡˘⟨ cong (λ ◌ → expBySquare ι ◌ n ⋆ x) (⋆⋆-homoʳ x k k) ⟩
expBySquare ι (x ⋆⋆ (k + k)) n ⋆ x ≡⟨ expBySquare-comm x (k + k) n ⟩
expBySquare x (x ⋆⋆ (k + k)) n ≡⟨ cong (λ ◌ → expBySquare x ◌ n) (⋆⋆-homoʳ x k k) ⟩
expBySquare x ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ∎
expBySquare-comm x k (true ∷ n) = begin
expBySquare (ι ⋆ (x ⋆⋆ k)) ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x ≡⟨ cong (λ ◌ → expBySquare ◌ ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x) (⋆-identityˡ (x ⋆⋆ k)) ⟩
expBySquare (x ⋆⋆ k) ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ⋆ x ≡˘⟨ cong₂ (λ ◌ᵃ ◌ᵇ → expBySquare ◌ᵃ ◌ᵇ n ⋆ x) (⋆-identityʳ (x ⋆⋆ k)) (⋆⋆-homoʳ x k k) ⟩
expBySquare ((x ⋆⋆ k) ⋆ ι) (x ⋆⋆ (k + k)) n ⋆ x ≡⟨ cong (_⋆ x) (expBySquare-homoˡ (x ⋆⋆ k) ι (x ⋆⋆ (k + k)) n) ⟩
(x ⋆⋆ k) ⋆ expBySquare ι (x ⋆⋆ (k + k)) n ⋆ x ≡˘⟨ ⋆-assoc (x ⋆⋆ k) (expBySquare ι (x ⋆⋆ (k + k)) n) x ⟩
(x ⋆⋆ k) ⋆ (expBySquare ι (x ⋆⋆ (k + k)) n ⋆ x) ≡⟨ cong ((x ⋆⋆ k) ⋆_) (expBySquare-comm x (k + k) n) ⟩
(x ⋆⋆ k) ⋆ expBySquare x (x ⋆⋆ (k + k)) n ≡˘⟨ expBySquare-homoˡ (x ⋆⋆ k) x (x ⋆⋆ (k + k)) n ⟩
expBySquare ((x ⋆⋆ k) ⋆ x) (x ⋆⋆ (k + k)) n ≡⟨ cong₂ (λ ◌ᵃ ◌ᵇ → expBySquare ◌ᵃ ◌ᵇ n) (⋆⋆-comm x k) (⋆⋆-homoʳ x k k) ⟩
expBySquare (x ⋆ (x ⋆⋆ k)) ((x ⋆⋆ k) ⋆ (x ⋆⋆ k)) n ∎
-- Special case of homomorphism because multiplication isn't commutative
expBySquare-homoʳ :
(x y : A) (n : List Bool) →
expBySquare x (y ⋆ y) n ≡ expBySquare x y n ⋆ expBySquare ι y n
expBySquare-homoʳ x y [] = sym (⋆-identityʳ x)
expBySquare-homoʳ x y (false ∷ n) = expBySquare-homoʳ x (y ⋆ y) n
expBySquare-homoʳ x y (true ∷ n) = begin
expBySquare (x ⋆ (y ⋆ y)) (y ⋆ y ⋆ (y ⋆ y)) n ≡⟨ expBySquare-homoʳ (x ⋆ (y ⋆ y)) (y ⋆ y) n ⟩
expBySquare (x ⋆ (y ⋆ y)) (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n ≡⟨ cong (λ ◌ → expBySquare ◌ (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n) (⋆-assoc x y y) ⟩
expBySquare ((x ⋆ y) ⋆ y) (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n ≡⟨ cong (_⋆ expBySquare ι (y ⋆ y) n) (expBySquare-homoˡ (x ⋆ y) y (y ⋆ y) n) ⟩
(x ⋆ y) ⋆ expBySquare y (y ⋆ y) n ⋆ expBySquare ι (y ⋆ y) n ≡˘⟨ cong (λ ◌ → x ⋆ y ⋆ expBySquare y (y ⋆ ◌) n ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ y) ⟩
(x ⋆ y) ⋆ expBySquare y (y ⋆⋆ 2) n ⋆ expBySquare ι (y ⋆ y) n ≡˘⟨ cong (λ ◌ → x ⋆ y ⋆ ◌ ⋆ expBySquare ι (y ⋆ y) n) (expBySquare-comm y 2 n) ⟩
(x ⋆ y) ⋆ (expBySquare ι (y ⋆⋆ 2) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n ≡⟨ cong (λ ◌ → x ⋆ y ⋆ (expBySquare ι (y ⋆ ◌) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ y) ⟩
(x ⋆ y) ⋆ (expBySquare ι (y ⋆ y) n ⋆ y) ⋆ expBySquare ι (y ⋆ y) n ≡⟨ cong (_⋆ expBySquare ι (y ⋆ y) n) (⋆-assoc (x ⋆ y) (expBySquare ι (y ⋆ y) n) y) ⟩
(x ⋆ y) ⋆ expBySquare ι (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n ≡˘⟨ cong (λ ◌ → ◌ ⋆ y ⋆ expBySquare ι (y ⋆ y) n) (expBySquare-homoˡ (x ⋆ y) ι (y ⋆ y) n) ⟩
expBySquare ((x ⋆ y) ⋆ ι) (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n ≡⟨ cong (λ ◌ → expBySquare ◌ (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n) (⋆-identityʳ (x ⋆ y)) ⟩
expBySquare (x ⋆ y) (y ⋆ y) n ⋆ y ⋆ expBySquare ι (y ⋆ y) n ≡˘⟨ ⋆-assoc (expBySquare (x ⋆ y) (y ⋆ y) n) y (expBySquare ι (y ⋆ y) n) ⟩
expBySquare (x ⋆ y) (y ⋆ y) n ⋆ (y ⋆ expBySquare ι (y ⋆ y) n) ≡˘⟨ cong (expBySquare (x ⋆ y) (y ⋆ y) n ⋆_) (expBySquare-homoˡ y ι (y ⋆ y) n) ⟩
expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare (y ⋆ ι) (y ⋆ y) n ≡⟨ cong (λ ◌ → expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare ◌ (y ⋆ y) n) (⋆-identityʳ y) ⟩
expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare y (y ⋆ y) n ≡˘⟨ cong (λ ◌ → expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare ◌ (y ⋆ y) n) (⋆-identityˡ y) ⟩
expBySquare (x ⋆ y) (y ⋆ y) n ⋆ expBySquare (ι ⋆ y) (y ⋆ y) n ∎
_⋆⋆ᵇ_ : A → List Bool → A
x ⋆⋆ᵇ n = expBySquare ι x n
⋆⋆ᵇ-homoˡ : (x : A) (n : List Bool) → (x ⋆ x) ⋆⋆ᵇ n ≡ (x ⋆⋆ᵇ n) ⋆ (x ⋆⋆ᵇ n)
⋆⋆ᵇ-homoˡ x n = expBySquare-homoʳ ι x n
proof-lemma : ∀ x n → x ⋆⋆ᵇ n ≡ x ⋆⋆ fromBits n → (x ⋆ x) ⋆⋆ᵇ n ≡ x ⋆⋆ (2 * fromBits n)
proof-lemma x n prf = begin
(x ⋆ x) ⋆⋆ᵇ n ≡⟨ ⋆⋆ᵇ-homoˡ x n ⟩
(x ⋆⋆ᵇ n) ⋆ (x ⋆⋆ᵇ n) ≡⟨ cong₂ _⋆_ prf prf ⟩
(x ⋆⋆ fromBits n) ⋆ (x ⋆⋆ fromBits n) ≡˘⟨ ⋆⋆-homoʳ x (fromBits n) (fromBits n) ⟩
x ⋆⋆ (fromBits n + fromBits n) ≡˘⟨ cong (λ ◌ → x ⋆⋆ (fromBits n + ◌)) (+-identityʳ (fromBits n)) ⟩
x ⋆⋆ (2 * fromBits n) ∎
proof : ∀ n k → n ⋆⋆ᵇ k ≡ n ⋆⋆ (fromBits k)
proof x [] = refl
proof x (false ∷ n) = proof-lemma x n (proof x n)
proof x (true ∷ n) = begin
expBySquare (ι ⋆ x) (x ⋆ x) n ≡⟨ cong (λ ◌ → expBySquare ◌ (x ⋆ x) n) (⋆-identityˡ x) ⟩
expBySquare x (x ⋆ x) n ≡˘⟨ cong (λ ◌ → expBySquare ◌ (x ⋆ x) n) (⋆-identityʳ x) ⟩
expBySquare (x ⋆ ι) (x ⋆ x) n ≡⟨ expBySquare-homoˡ x ι (x ⋆ x) n ⟩
x ⋆ ((x ⋆ x) ⋆⋆ᵇ n) ≡⟨ cong (x ⋆_) (proof-lemma x n (proof x n)) ⟩
x ⋆ (x ⋆⋆ (2 * fromBits n)) ∎
|