blob: 6e0e89cccea9213601703c43b052b78252b5c19d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
module Problem15 where
open import Data.Vec as Vec
open import Data.Fin
open import Data.Nat using (ℕ; zero; suc)
open import Data.Product hiding (map)
open import Relation.Binary.PropositionalEquality
open import Data.Vec.Properties
open import Relation.Nullary
open import Function
open ≡-Reasoning
variable n : ℕ
variable A B : Set
-- Useful properties not in stdlib 1.7.3
map-tabulate : (g : A → B) (f : Fin n → A) → map g (tabulate f) ≡ tabulate (g ∘′ f)
map-tabulate g f = begin
map g (tabulate f) ≡⟨ cong (map g) (tabulate-allFin f) ⟩
map g (map f (allFin _)) ≡˘⟨ map-∘ g f (allFin _) ⟩
map (g ∘′ f) (allFin _) ≡˘⟨ tabulate-allFin (g ∘′ f) ⟩
tabulate (g ∘′ f) ∎
Sur : ∀(v : Vec (Fin n) n) → Set
Sur {n} v = ∀(x : Fin n) → ∃[ i ] lookup v i ≡ x
Inj : ∀(v : Vec A n ) → Set
Inj {_}{n} v = (a b : Fin n) → lookup v a ≡ lookup v b → a ≡ b
record Perm (n : ℕ) : Set where
constructor P
field indices : Vec (Fin n) n
field surjective : Sur indices
field injective : Inj indices
_⟨$⟩_ : Fin n → Fin n
_⟨$⟩_ = lookup indices
open Perm
-- Agda's proof irrelevance is too janky to work here
-- And we'd need functional extensionality + UIP to prove this directly
postulate cong-Perm : ∀ (p q : Perm n) → Perm.indices p ≡ Perm.indices q → p ≡ q
permute : Perm n → Vec A n → Vec A n
permute (P p _ _) v = map (lookup v) p
_⊡_ : Perm n → Perm n → Perm n
(p ⊡ r) .indices = tabulate ((p ⟨$⟩_) ∘ (r ⟨$⟩_))
(p ⊡ r) .surjective x .proj₁ = r .surjective (p .surjective x .proj₁) .proj₁
(p ⊡ r) .surjective x .proj₂ =
let (i , prf₁) = p .surjective x in
let (j , prf₂) = r .surjective i in
begin
lookup (tabulate ((p ⟨$⟩_) ∘ (r ⟨$⟩_))) j ≡⟨ lookup∘tabulate _ j ⟩
p ⟨$⟩ (r ⟨$⟩ j) ≡⟨ cong (p ⟨$⟩_) prf₂ ⟩
p ⟨$⟩ i ≡⟨ prf₁ ⟩
x ∎
(p ⊡ r) .injective x y prf =
r .injective x y $′
p .injective (r ⟨$⟩ x) (r ⟨$⟩ y) $′
begin
p ⟨$⟩ (r ⟨$⟩ x) ≡˘⟨ lookup∘tabulate _ x ⟩
lookup (tabulate ((p ⟨$⟩_) ∘ (r ⟨$⟩_))) x ≡⟨ prf ⟩
lookup (tabulate ((p ⟨$⟩_) ∘ (r ⟨$⟩_))) y ≡⟨ lookup∘tabulate _ y ⟩
p ⟨$⟩ (r ⟨$⟩ y) ∎
infixl 20 _⊡_
composition : (v : Vec A n)(p q : Perm n) → permute (p ⊡ q) v ≡ permute q (permute p v)
composition v p q = begin
map (lookup v) ((p ⊡ q) .indices) ≡⟨⟩
map (lookup v) (tabulate ((p ⟨$⟩_) ∘′ (q ⟨$⟩_))) ≡⟨ map-tabulate (lookup v) ((p ⟨$⟩_) ∘′ (q ⟨$⟩_)) ⟩
tabulate (lookup v ∘′ (p ⟨$⟩_) ∘′ (q ⟨$⟩_)) ≡⟨⟩
tabulate (lookup v ∘′ (p ⟨$⟩_) ∘′ lookup (q .indices)) ≡˘⟨ tabulate-cong (λ i → lookup-map i (lookup v ∘′ (p ⟨$⟩_)) (q .indices)) ⟩
tabulate (lookup (map (lookup v ∘′ (p ⟨$⟩_)) (q .indices))) ≡⟨ tabulate∘lookup (map (lookup v ∘′ (p ⟨$⟩_)) (q .indices)) ⟩
map (lookup v ∘′ (p ⟨$⟩_)) (q .indices) ≡⟨⟩
map (lookup v ∘′ lookup (p .indices)) (q .indices) ≡˘⟨ map-cong (λ i → lookup-map i (lookup v) (p .indices)) (q .indices) ⟩
map (lookup (map (lookup v) (p .indices))) (q .indices) ∎
assoc : ∀ (p q r : Perm n) → p ⊡ (q ⊡ r) ≡ p ⊡ q ⊡ r
assoc p q r =
cong-Perm (p ⊡ (q ⊡ r)) (p ⊡ q ⊡ r) $′
begin
tabulate ((p ⟨$⟩_) ∘′ ((q ⊡ r) ⟨$⟩_)) ≡⟨ tabulate-cong (λ i → cong (p ⟨$⟩_) (lookup∘tabulate ((q ⟨$⟩_) ∘′ (r ⟨$⟩_)) i)) ⟩
tabulate ((p ⟨$⟩_) ∘′ (q ⟨$⟩_) ∘′ (r ⟨$⟩_)) ≡˘⟨ tabulate-cong (λ i → lookup∘tabulate ((p ⟨$⟩_) ∘′ (q ⟨$⟩_)) (r ⟨$⟩ i)) ⟩
tabulate (((p ⊡ q) ⟨$⟩_) ∘′ (r ⟨$⟩_)) ∎
ι : Perm n
ι {n} .indices = allFin n
ι {n} .surjective x = x , lookup-allFin x
ι {n} .injective x y prf = begin
x ≡˘⟨ lookup-allFin x ⟩
lookup (allFin n) x ≡⟨ prf ⟩
lookup (allFin n) y ≡⟨ lookup-allFin y ⟩
y ∎
identityˡ : ∀(p : Perm n) → ι ⊡ p ≡ p
identityˡ p =
cong-Perm (ι ⊡ p) p $′
begin
tabulate (lookup (allFin _) ∘′ (p ⟨$⟩_)) ≡⟨ tabulate-cong (λ i → lookup-allFin (p ⟨$⟩ i)) ⟩
tabulate (p ⟨$⟩_) ≡⟨ tabulate∘lookup (p .indices) ⟩
p .indices ∎
identityʳ : ∀(p : Perm n) → p ⊡ ι ≡ p
identityʳ {n} p =
cong-Perm (p ⊡ ι) p $′
begin
tabulate ((p ⟨$⟩_) ∘′ lookup (allFin n)) ≡⟨ tabulate-cong (λ i → cong (p ⟨$⟩_) (lookup-allFin i)) ⟩
tabulate (p ⟨$⟩_) ≡⟨ tabulate∘lookup (p .indices) ⟩
p .indices ∎
_⁻¹ : Perm n → Perm n
(p ⁻¹) .indices = tabulate (proj₁ ∘ p .surjective)
(p ⁻¹) .surjective x .proj₁ = p ⟨$⟩ x
(p ⁻¹) .surjective x .proj₂ =
p .injective (lookup (tabulate (proj₁ ∘ p .surjective)) (p ⟨$⟩ x)) x $′
begin
p ⟨$⟩ lookup (tabulate (proj₁ ∘ p .surjective)) (p ⟨$⟩ x) ≡⟨ cong (p ⟨$⟩_) (lookup∘tabulate (proj₁ ∘ p .surjective) (p ⟨$⟩ x)) ⟩
p ⟨$⟩ p .surjective (p ⟨$⟩ x) .proj₁ ≡⟨ p .surjective (p ⟨$⟩ x) .proj₂ ⟩
p ⟨$⟩ x ∎
(p ⁻¹) .injective x y prf =
begin
x ≡˘⟨ p .surjective x .proj₂ ⟩
p ⟨$⟩ p .surjective x .proj₁ ≡˘⟨ cong (p ⟨$⟩_) (lookup∘tabulate (proj₁ ∘ p .surjective) x) ⟩
p ⟨$⟩ lookup (tabulate (proj₁ ∘ p .surjective)) x ≡⟨ cong (p ⟨$⟩_) prf ⟩
p ⟨$⟩ lookup (tabulate (proj₁ ∘ p .surjective)) y ≡⟨ cong (p ⟨$⟩_) (lookup∘tabulate (proj₁ ∘ p .surjective) y) ⟩
p ⟨$⟩ p .surjective y .proj₁ ≡⟨ p .surjective y .proj₂ ⟩
y ∎
infixl 30 _⁻¹
inverseˡ : ∀(p : Perm n) → p ⁻¹ ⊡ p ≡ ι
inverseˡ p =
cong-Perm (p ⁻¹ ⊡ p) ι $′
begin
tabulate ((p ⁻¹ ⟨$⟩_) ∘′ (p ⟨$⟩_)) ≡⟨ tabulate-cong (λ i → lookup∘tabulate (proj₁ ∘ p .surjective) (p ⟨$⟩ i)) ⟩
tabulate (proj₁ ∘ p .surjective ∘ (p ⟨$⟩_)) ≡⟨ tabulate-cong (λ i → p .injective _ i (p .surjective (p ⟨$⟩ i) .proj₂)) ⟩
tabulate id ∎
inverseʳ : ∀(p : Perm n) → p ⊡ p ⁻¹ ≡ ι
inverseʳ p =
cong-Perm (p ⊡ p ⁻¹) ι $′
begin
tabulate ((p ⟨$⟩_) ∘′ (p ⁻¹ ⟨$⟩_)) ≡⟨ tabulate-cong (λ i → cong (p ⟨$⟩_) (lookup∘tabulate (proj₁ ∘ p .surjective) i)) ⟩
tabulate ((p ⟨$⟩_) ∘ proj₁ ∘ p .surjective) ≡⟨ tabulate-cong (λ i → p .surjective i .proj₂) ⟩
tabulate id ∎
|