summaryrefslogtreecommitdiff
path: root/src/Problem6.agda
blob: 90e85262a61def25bd2023342fb6fd16511c7ff2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
{-# OPTIONS --safe #-}

module Problem6 where

open import Data.Nat
open import Data.Nat.Properties using (1+n≢0; +-assoc; +-identityʳ)
open import Data.Empty using (⊥-elim)
open import Data.Fin using (Fin; suc; raise; inject+)
open import Data.Fin.Patterns
open import Data.Fin.Properties using (toℕ-injective; toℕ-inject+)
open import Data.List
open import Data.List.Properties using (++-assoc; ++-identityʳ)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality hiding ([_])

open ≡-Reasoning

data Expr : Set where
  Const : ℕ → Expr
  _⊞_ : Expr → Expr → Expr
  _⊠_ : Expr → Expr → Expr

eval : Expr → ℕ
eval (Const x) = x
eval (p ⊞ q) = eval p + eval q
eval (p ⊠ q) = eval p * eval q

data Instr : Set where
  Push : ℕ → Instr
  Mult Add : Instr

instr-semantics : Instr → List ℕ → List ℕ
instr-semantics (Push x) s       = x ∷ s
instr-semantics Mult (y ∷ x ∷ s) = x * y ∷ s
instr-semantics Add  (y ∷ x ∷ s) = x + y ∷ s
instr-semantics _ _ = []

execute : List Instr → List ℕ → List ℕ
execute []       s = s
execute (i ∷ is) s = execute is (instr-semantics i s)

compile : Expr → List Instr
compile (Const x) = [ Push x ]
compile (e₁ ⊞ e₂) = compile e₁ ++ compile e₂ ++ [ Add  ]
compile (e₁ ⊠ e₂) = compile e₁ ++ compile e₂ ++ [ Mult ]

-- Use difference lists because they are nicer to work with.

compile′ : Expr → List Instr → List Instr
compile′ (Const x) is = Push x ∷ is
compile′ (e₁ ⊞ e₂) is = compile′ e₁ (compile′ e₂ (Add ∷ is))
compile′ (e₁ ⊠ e₂) is = compile′ e₁ (compile′ e₂ (Mult ∷ is))

compile≗compile′ : ∀ e is → compile e ++ is ≡ compile′ e is
compile≗compile′ (Const x) is = refl
compile≗compile′ (e₁ ⊞ e₂) is = begin
  (compile e₁ ++ compile e₂ ++ [ Add ]) ++ is ≡⟨ ++-assoc (compile e₁) (compile e₂ ++ [ Add ]) is ⟩
  compile e₁ ++ (compile e₂ ++ [ Add ]) ++ is ≡⟨ cong (compile e₁ ++_) (++-assoc (compile e₂) [ Add ] is) ⟩
  compile e₁ ++ compile e₂ ++ Add ∷ is        ≡⟨ cong (compile e₁ ++_) (compile≗compile′ e₂ (Add ∷ is)) ⟩
  compile e₁ ++ compile′ e₂ (Add ∷ is)        ≡⟨ compile≗compile′ e₁ (compile′ e₂ (Add ∷ is)) ⟩
  compile′ e₁ (compile′ e₂ (Add ∷ is))        ∎
compile≗compile′ (e₁ ⊠ e₂) is = begin
  (compile e₁ ++ compile e₂ ++ [ Mult ]) ++ is ≡⟨ ++-assoc (compile e₁) (compile e₂ ++ [ Mult ]) is ⟩
  compile e₁ ++ (compile e₂ ++ [ Mult ]) ++ is ≡⟨ cong (compile e₁ ++_) (++-assoc (compile e₂) [ Mult ] is) ⟩
  compile e₁ ++ compile e₂ ++ Mult ∷ is        ≡⟨ cong (compile e₁ ++_) (compile≗compile′ e₂ (Mult ∷ is)) ⟩
  compile e₁ ++ compile′ e₂ (Mult ∷ is)        ≡⟨ compile≗compile′ e₁ (compile′ e₂ (Mult ∷ is)) ⟩
  compile′ e₁ (compile′ e₂ (Mult ∷ is))        ∎

-- Generalise expressions to open terms

data Expr′ (n : ℕ) : Set where
  Var   : Fin n → Expr′ n
  Const : ℕ → Expr′ n
  _⊞_   : Expr′ n → Expr′ n → Expr′ n
  _⊠_   : Expr′ n → Expr′ n → Expr′ n

forget : Expr → Expr′ 0
forget (Const x) = Const x
forget (e₁ ⊞ e₂) = forget e₁ ⊞ forget e₂
forget (e₁ ⊠ e₂) = forget e₁ ⊠ forget e₂

eval′ : ∀ {n} → Expr′ n → (Fin n → ℕ) → ℕ
eval′ (Var x)   γ = γ x
eval′ (Const x) γ = x
eval′ (e₁ ⊞ e₂) γ = eval′ e₁ γ + eval′ e₂ γ
eval′ (e₁ ⊠ e₂) γ = eval′ e₁ γ * eval′ e₂ γ

eval′-correct : (e : Expr) → eval′ (forget e) (λ ()) ≡ eval e
eval′-correct (Const x) = refl
eval′-correct (e₁ ⊞ e₂) = cong₂ _+_ (eval′-correct e₁) (eval′-correct e₂)
eval′-correct (e₁ ⊠ e₂) = cong₂ _*_ (eval′-correct e₁) (eval′-correct e₂)

-- We can substitute free variables.

wkn : ∀ {k} n → Expr′ k → Expr′ (k + n)
wkn n (Var x)   = Var (inject+ n x)
wkn n (Const x) = Const x
wkn n (e₁ ⊞ e₂) = wkn n e₁ ⊞ wkn n e₂
wkn n (e₁ ⊠ e₂) = wkn n e₁ ⊠ wkn n e₂

sub : ∀ {k n} → Expr′ k → Expr′ (suc n) → Expr′ (k + n)
sub         e′ (Var 0F)      = wkn _ e′
sub {k = k} e′ (Var (suc i)) = Var (raise k i)
sub         e′ (Const x)     = Const x
sub         e′ (e₁ ⊞ e₂)     = sub e′ e₁ ⊞ sub e′ e₂
sub         e′ (e₁ ⊠ e₂)     = sub e′ e₁ ⊠ sub e′ e₂

-- These facts generalise to `n` variables, but the types are nasty

wkn0 : (e : Expr′ 0) → wkn 0 e ≡ e
wkn0 (Const x) = refl
wkn0 (e₁ ⊞ e₂) = cong₂ _⊞_ (wkn0 e₁) (wkn0 e₂)
wkn0 (e₁ ⊠ e₂) = cong₂ _⊠_ (wkn0 e₁) (wkn0 e₂)

wkn-assoc : ∀ k n (e : Expr′ 0) → wkn (k + n) e ≡ wkn n (wkn k e)
wkn-assoc k n (Const x) = refl
wkn-assoc k n (e₁ ⊞ e₂) = cong₂ _⊞_ (wkn-assoc k n e₁) (wkn-assoc k n e₂)
wkn-assoc k n (e₁ ⊠ e₂) = cong₂ _⊠_ (wkn-assoc k n e₁) (wkn-assoc k n e₂)

sub-wkn : (e′ : Expr′ 0) (e : Expr′ 0) → sub e′ (wkn 1 e) ≡ e
sub-wkn e′ (Const x) = refl
sub-wkn e′ (e₁ ⊞ e₂) = cong₂ _⊞_ (sub-wkn e′ e₁) (sub-wkn e′ e₂)
sub-wkn e′ (e₁ ⊠ e₂) = cong₂ _⊠_ (sub-wkn e′ e₁) (sub-wkn e′ e₂)

wkn-sub : ∀ {k} n (e′ : Expr′ 0) (e : Expr′ (suc k)) → sub e′ (wkn n e) ≡ wkn n (sub e′ e)
wkn-sub n e′ (Const x) = refl
wkn-sub n e′ (e₁ ⊞ e₂) = cong₂ _⊞_ (wkn-sub n e′ e₁) (wkn-sub n e′ e₂)
wkn-sub n e′ (e₁ ⊠ e₂) = cong₂ _⊠_ (wkn-sub n e′ e₁) (wkn-sub n e′ e₂)
wkn-sub n e′ (Var 0F)      = wkn-assoc _ n e′
wkn-sub n e′ (Var (suc i)) = refl

sub-assoc :
  ∀ {m n} (e₁ : Expr′ 0) (e₂ : Expr′ (suc m)) (e₃ : Expr′ (suc n)) →
  sub e₁ (sub e₂ e₃) ≡ sub (sub e₁ e₂) e₃
sub-assoc e₁ e₂ (Const x) = refl
sub-assoc e₁ e₂ (e₃ ⊞ e₄) = cong₂ _⊞_ (sub-assoc e₁ e₂ e₃) (sub-assoc e₁ e₂ e₄)
sub-assoc e₁ e₂ (e₃ ⊠ e₄) = cong₂ _⊠_ (sub-assoc e₁ e₂ e₃) (sub-assoc e₁ e₂ e₄)
sub-assoc e₁ e₂ (Var 0F)      = wkn-sub _ e₁ e₂
sub-assoc e₁ e₂ (Var (suc i)) = refl

-- I want to work only on well-formed instruction sequences. A sequence "eats"
-- `n` arguments if correct execution requires `n` elements on the stack.
--
-- The arity of an instruction gives how many arguments it consumes.

arity : Instr → ℕ
arity (Push x) = 0
arity Add      = 2
arity Mult     = 2

data WellFormed : List Instr → ℕ → Set where
  []   : WellFormed [] 1
  _∷_  : ∀ {is n} → (i : Instr) → WellFormed is (suc n) → WellFormed (i ∷ is) (arity i + n)

-- Compilation only produces well-formed sequences that produce one element.

compile′-wf : ∀ {n is} (e : Expr) → WellFormed is (suc n) → WellFormed (compile′ e is) n
compile′-wf (Const x) wf = Push x ∷ wf
compile′-wf (e₁ ⊞ e₂) wf = compile′-wf e₁ (compile′-wf e₂ (Add ∷ wf))
compile′-wf (e₁ ⊠ e₂) wf = compile′-wf e₁ (compile′-wf e₂ (Mult ∷ wf))

-- We can form open expressions from instruction sequences.

decompile₁ : (i : Instr) → Expr′ (arity i)
decompile₁ (Push x) = Const x
decompile₁ Add      = Var 1F ⊞ Var 0F
decompile₁ Mult     = Var 1F ⊠ Var 0F

decompile : ∀ {n is} → WellFormed is n → Expr′ n
decompile []       = Var 0F
decompile (i ∷ wf) = sub (decompile₁ i) (decompile wf)

-- Provide semantics for function environments

instr-semantics′ : ∀ {n} (i : Instr) → (Fin (arity i + n) → ℕ) → Fin (suc n) → ℕ
instr-semantics′ i        f (suc x) = f (raise (arity i) x)
instr-semantics′ (Push x) f 0F      = x
instr-semantics′ Add      f 0F      = f 1F + f 0F
instr-semantics′ Mult     f 0F      = f 1F * f 0F

instr-semantics-cong :
  ∀ (i : Instr) {n xs} {f : Fin (arity i + n) → ℕ} →
  xs ≡ tabulate f → instr-semantics i xs ≡ tabulate (instr-semantics′ i f)
instr-semantics-cong (Push x) refl = refl
instr-semantics-cong Add      refl = refl
instr-semantics-cong Mult     refl = refl

-- Prove decompilation is correct

eval-sub :
  ∀ (i : Instr) {n} (f : Fin (arity i + n) → ℕ) (e : Expr′ (suc n)) →
  eval′ e (instr-semantics′ i f) ≡ eval′ (sub (decompile₁ i) e) f
eval-sub i f (Const x)     = refl
eval-sub i f (e₁ ⊞ e₂)     = cong₂ _+_ (eval-sub i f e₁) (eval-sub i f e₂)
eval-sub i f (e₁ ⊠ e₂)     = cong₂ _*_ (eval-sub i f e₁) (eval-sub i f e₂)
eval-sub i f (Var (suc x)) = refl
eval-sub (Push x) f (Var 0F) = refl
eval-sub Add      f (Var 0F) = refl
eval-sub Mult     f (Var 0F) = refl

eval-decompile :
  ∀ {n is} (wf : WellFormed is n) (xs : List ℕ) (f : Fin n → ℕ) →
  xs ≡ tabulate f → execute is xs ≡ [ eval′ (decompile wf) f ]
eval-decompile [] xs f xs≡f = xs≡f
eval-decompile {is = .i ∷ is} (i ∷ wf) xs f xs≡f = begin
  execute is (instr-semantics i xs)               ≡⟨ eval-decompile wf (instr-semantics i xs) (instr-semantics′ i f) (instr-semantics-cong i xs≡f) ⟩
  [ eval′ (decompile wf) (instr-semantics′ i f) ] ≡⟨ cong [_] (eval-sub i f (decompile wf)) ⟩
  [ eval′ (sub (decompile₁ i) (decompile wf)) f ] ∎

-- Prove decompilation is an inverse

decompile-compile′ : ∀ {is n} (e : Expr) (wf : WellFormed is (suc n)) → decompile (compile′-wf e wf) ≡ sub (forget e) (decompile wf)
decompile-compile′ (Const x) wf = refl
decompile-compile′ (e₁ ⊞ e₂) wf = begin
  decompile (compile′-wf e₁ (compile′-wf e₂ (Add ∷ wf)))                       ≡⟨ decompile-compile′ e₁ (compile′-wf e₂ (Add ∷ wf)) ⟩
  sub (forget e₁) (decompile (compile′-wf e₂ (Add ∷ wf)))                      ≡⟨ cong (sub (forget e₁)) (decompile-compile′ e₂ (Add ∷ wf)) ⟩
  sub (forget e₁) (sub (forget e₂) (sub (Var 1F ⊞ Var 0F) (decompile wf)))     ≡⟨ cong (sub (forget e₁)) (sub-assoc (forget e₂) (Var 1F ⊞ Var 0F) (decompile wf)) ⟩
  sub (forget e₁) (sub (Var 0F ⊞ wkn 1 (forget e₂)) (decompile wf))            ≡⟨ sub-assoc (forget e₁) (Var 0F ⊞ wkn 1 (forget e₂)) (decompile wf) ⟩
  sub (wkn 0 (forget e₁) ⊞ sub (forget e₁) (wkn 1 (forget e₂))) (decompile wf) ≡⟨ cong₂ (λ -₁ -₂ → sub (-₁ ⊞ -₂) (decompile wf)) (wkn0 (forget e₁)) (sub-wkn (forget e₁) (forget e₂)) ⟩
  sub (forget e₁ ⊞ forget e₂) (decompile wf)                                   ∎
decompile-compile′ (e₁ ⊠ e₂) wf = begin
  decompile (compile′-wf e₁ (compile′-wf e₂ (Mult ∷ wf)))                      ≡⟨ decompile-compile′ e₁ (compile′-wf e₂ (Mult ∷ wf)) ⟩
  sub (forget e₁) (decompile (compile′-wf e₂ (Mult ∷ wf)))                     ≡⟨ cong (sub (forget e₁)) (decompile-compile′ e₂ (Mult ∷ wf)) ⟩
  sub (forget e₁) (sub (forget e₂) (sub (Var 1F ⊠ Var 0F) (decompile wf)))     ≡⟨ cong (sub (forget e₁)) (sub-assoc (forget e₂) (Var 1F ⊠ Var 0F) (decompile wf)) ⟩
  sub (forget e₁) (sub (Var 0F ⊠ wkn 1 (forget e₂)) (decompile wf))            ≡⟨ sub-assoc (forget e₁) (Var 0F ⊠ wkn 1 (forget e₂)) (decompile wf) ⟩
  sub (wkn 0 (forget e₁) ⊠ sub (forget e₁) (wkn 1 (forget e₂))) (decompile wf) ≡⟨ cong₂ (λ -₁ -₂ → sub (-₁ ⊠ -₂) (decompile wf)) (wkn0 (forget e₁)) (sub-wkn (forget e₁) (forget e₂)) ⟩
  sub (forget e₁ ⊠ forget e₂) (decompile wf)                                   ∎

-- Prove evaluation correct.

compile-correct : ∀ e → execute (compile e) [] ≡ [ eval e ]
compile-correct e = begin
  execute (compile e) []                          ≡˘⟨ cong (λ - → execute - []) (++-identityʳ (compile e)) ⟩
  execute (compile e ++ []) []                    ≡⟨ cong (λ - → execute - []) (compile≗compile′ e []) ⟩
  execute (compile′ e []) []                      ≡⟨ eval-decompile (compile′-wf e []) [] (λ ()) refl ⟩
  [ eval′ (decompile (compile′-wf e [])) (λ ()) ] ≡⟨ cong (λ - → [ eval′ - (λ ()) ]) (decompile-compile′ e []) ⟩
  [ eval′ (wkn 0 (forget e)) (λ ()) ]             ≡⟨ cong (λ - → [ eval′ - (λ ()) ]) (wkn0 (forget e)) ⟩
  [ eval′ (forget e) (λ ()) ]                     ≡⟨ cong [_] (eval′-correct e) ⟩
  [ eval e ]                                      ∎