diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2025-04-23 15:59:22 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2025-04-23 15:59:22 +0100 |
commit | 4353f331b5ab4af157f576f54b1cc79dd08abb12 (patch) | |
tree | 2a8a9314e27bb1ed185ee5bee40ac5b0062f46da /sec/lang.ltx | |
parent | a2afd4b08dc2b7eada2f95ee95457457a3331344 (diff) |
Current state of affairs.
Diffstat (limited to 'sec/lang.ltx')
-rw-r--r-- | sec/lang.ltx | 388 |
1 files changed, 186 insertions, 202 deletions
diff --git a/sec/lang.ltx b/sec/lang.ltx index c7851e2..3b0134a 100644 --- a/sec/lang.ltx +++ b/sec/lang.ltx @@ -4,223 +4,207 @@ \section{Core Language}% \label{sec:lang} -In this section, we describe \lang{} a new calculus with higher-order functions -and regular types~\cite{Squid:unpublished/McBride01}. We start by describing the -types within the language: products, sums, recursive types and functions. We -then describe the syntax which is standard for n-ary products and sums. We also -define a \mapkw{} operation over arbitrary (covariant) functors.\@ \mapkw{} is -necessary to define the equational theory of \foldkw{}, the eliminator for -recursive types. The equational theory has \(\beta\) equalities, but no \(\eta\) -equalities, a consequence of the embedding into System~T. - -Types for \lang{}, in \cref{fig:lang-wf}, are given relative to a context of -type variables. The judgement \(\jdgmnt{ty}{\Theta}{A}\) states that \(A\) is a -well-formed type in with variables from context \(\Theta\). Products and sums -are well-formed when each of the n-ary components are well-formed. The recursive -type \(\mu X. A\) is formed from a type \(A\) in a context extended by \(X\). -The other type formation rules ensure that \(X\) is used strictly positively, -and thus that recursive types are well-formed. In particular the rule forming -function types forbids using any type variables on the left of the arrow. This -forbids the use of type variables in negative positions. The function type -formation rule also forbids variables on the right. This is to forbid types -such as \(\mu X. 1 + \nat \to X\) of countable trees, as such a type cannot be -represented by System~T~\cite{proof}. Well-formed types also respect -substitution: -\begin{proposition}[Type Substitution] -Given \(\jdgmnt{ty}{\Theta}{A}\) and \(\jdgmnt{ty}{\Psi}{B_i}\) where \(i\) -ranges from \(0\) to \(\lvert \Theta \rvert\), we have -\(\jdgmnt{ty}{\Psi}{\FIXME{\sub{A}{X_i/B_i}}}\). -\end{proposition} +\TODO{ + \begin{itemize} + \item introduce core language as STLC with regular types + \end{itemize} +} \begin{figure} -\[ -\begin{array}{ccccc} - \begin{prooftree} - \hypo{ - X \in \Theta - \vphantom{\jdgmnt{ty}{\Theta}{A}} %% Spooky formatting phantom - } - \infer1{\jdgmnt{ty}{\Theta}{X}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\rangeover{\jdgmnt{ty}{\Theta}{A_i}}{i<n}} - \infer1{\jdgmnt{ty}{\Theta}{\prod_i^n A_i}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\rangeover{\jdgmnt{ty}{\Theta}{A_i}}{i<n}} - \infer1{\jdgmnt{ty}{\Theta}{\sum_i^n A_i}} - \end{prooftree} - & - \begin{prooftree} - \hypo{ - \jdgmnt{ty}{\Theta, X}{A} - \vphantom{\rangeover{\jdgmnt{ty}{\Theta}{A}}{i<n}} %% Spooky formatting phantom - } - \infer1{ - \jdgmnt{ty}{\Theta}{\mu X.A} - \vphantom{\jdgmnt{ty}{\Theta}{\sum_i^n A_i}} %% Spooky formatting phantom - } - \end{prooftree} - & - \begin{prooftree} - \hypo{\jdgmnt{ty}{}{A}} - \hypo{\jdgmnt{ty}{}{B}} - \infer2{\jdgmnt{ty}{\Theta}{A \to B}} - \end{prooftree} -\end{array} -\] -\caption{Well-formedness of \lang{} types}% -\label{fig:lang-wf} + \[ + \begin{prooftree} + \hypo{X \in \Psi} + \infer1{\jdgmnt{ty}{\Psi}{X}} + \end{prooftree} + \quad + \begin{prooftree} + \hypo{\jdgmnt{ty}{}{A}} + \hypo{\jdgmnt{ty}{}{B}} + \infer2{\jdgmnt{ty}{\Psi}{A \to B}} + \end{prooftree} + \quad + \begin{prooftree} + \hypo{\rangeover{\jdgmnt{ty}{\Psi}{A_i}}{i}} + \infer1{\jdgmnt{ty}{\Psi}{\prod_i A_i}} + \end{prooftree} + \quad + \begin{prooftree} + \hypo{\rangeover{\jdgmnt{ty}{\Psi}{A_i}}{i}} + \infer1{\jdgmnt{ty}{\Psi}{\sum_i A_i}} + \end{prooftree} + \quad + \begin{prooftree} + \hypo{\jdgmnt{ty}{\Psi, X}{A}} + \infer1{\jdgmnt{ty}{\Psi}{\mu X. A}} + \end{prooftree} + \] + \caption{Well-formedness of \lang{} types}\label{fig:artist-wf} \end{figure} -We present terms in \cref{fig:lang-type}. All type variables must be bound -within recursive types, so there is no type context. The typing rules for -variables, functions, products and sums are standard. Values of a recursive type -\(\mu X. A\) are constructed using \emph{rolling}. A value of type -\(\sub{A}{X/\mu X. A}\) is rolled into one of type \(\mu X. A\). Recursive types -are eliminated by \emph{folding}. To fold a target of type \(\mu X. A\) into -type \(B\), it is necessary to describe how to transform \(\sub{A}{X/B}\) into -\(B\). By only allowing eliminations of this form, we ensure that all recursion -is well-founded. +\Cref{fig:artist-wf} shows the well-formedness judgement for types. Notice that +for arrow types, the variable context is empty for both premises. Allowing +variables on the left of arrows leads to non-strictly positive types, which in +general are impossible to locally encode in System~T. Consider for example the +positive type \(\mu X. (X \to \nat) \to \nat\). In the \(\mathsf{Set}\) model of +System~T, this type must be represented by an infinite set containing its power +set. There is no System~T type with this property, thus we should forbid this +type. We also forbid variables on the right of arrows. For example, consider the +type \(\mu X. 1 + (\nat \to X)\) of countable trees. None of the general encoding +strategies work for this type; G\"odel and heap encodings both require +constructors that perform infinite work, whilst Church and codata encodings +would be global\footnote{\textcite{DBLP:books/sp/LongleyN15} claim the type +unrepresentable in some models of System~T}. + +\TODO{ + \begin{itemize} + \item state that type substitution preserves well-formedness + \end{itemize} +} \begin{figure} -\[ -\begin{array}{cc} - \begin{prooftree} - \hypo{x : A \in \Gamma} - \infer1{\judgement{\Gamma}{x}{A}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\judgement{\Gamma}{x}{A}} - \infer1{\judgement{\Gamma}{(x : A)}{A}} - \end{prooftree} - \\\\ - \begin{prooftree} - \hypo{\judgement{\Gamma, x : A}{t}{B}} - \infer1{\judgement{\Gamma}{\lambda x.~t}{A \to B}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\judgement{\Gamma}{f}{A \to B}} - \hypo{\judgement{\Gamma}{t}{A}} - \infer2{\judgement{\Gamma}{f~t}{B}} - \end{prooftree} - \\\\ - \begin{prooftree} - \hypo{\rangeover{\judgement{\Gamma}{t_i}{A_i}}{i<n}} - \infer1{\judgement{\Gamma}{\tuple*{\rangeover{t_i}{i<n}}}{\prod_i^n A_i}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\judgement{\Gamma}{e}{\prod_i^n A_i}} - \infer1{\judgement{\Gamma}{e.k}{A_k}} - \end{prooftree} - \\\\ - \begin{prooftree} - \hypo{\judgement{\Gamma}{t}{A_k}} - \infer1{\judgement{\Gamma}{\tuple{k, t}}{\sum_i^n A_i}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\judgement{\Gamma}{e}{\sum_i^n A_i}} - \hypo{\rangeover{\judgement{\Gamma, x_i : A_i}{t_i}{B}}{i<n}} - \infer2{\judgement{\Gamma}{\casetm{e}{x_i}{t_i}{i}{n}}{B}} - \end{prooftree} - \\\\ - \begin{prooftree} - \hypo{\judgement{\Gamma}{t}{\sub{A}{X/\mu X.A}}} - \infer1{\judgement{\Gamma}{\mathsf{roll}~t}{A}} - \end{prooftree} - & - \begin{prooftree} - \hypo{\judgement{\Gamma}{e}{\mu X.A}} - \hypo{\judgement{\Gamma, x : \sub{A}{X/B}}{t}{B}} - \infer2{\judgement{\Gamma}{\foldtm{e}{x}{t}}{B}} - \end{prooftree} -\end{array} -\] -\caption{Typing judgements for \lang{}}% -\label{fig:lang-type} + \[ + \begin{array}{cccc} + \begin{prooftree} + \hypo{x : A \in \Gamma} + \infer1{\judgement{\Gamma}{x}{A}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma, x : A}{t}{B}} + \infer1{\judgement{\Gamma}{\lambda x.t}{A \to B}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma}{f}{A \to B}} + \hypo{\judgement{\Gamma}{t}{A}} + \infer2{\judgement{\Gamma}{f~t}{B}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{A}} + \hypo{\judgement{\Gamma, x : A}{u}{B}} + \infer2{\judgement{\Gamma}{\lettm{t}{x}{u}}{B}} + \end{prooftree} + \\\\ + \begin{prooftree} + \hypo{\rangeover{\judgement{\Gamma}{t_i}{A_i}}{i}} + \infer1{\judgement{\Gamma}{\tuple{\rangeover{t_i}{i}}}{\prod_i A_i}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{\prod_i A_i}} + \infer1{\judgement{\Gamma}{t.i}{A_i}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{A_i}} + \infer1{\judgement{\Gamma}{\tuple{i, t}}{\sum_i A_i}} + \end{prooftree} + & + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{\sum_i A_i}} + \hypo{\rangeover{\judgement{\Gamma, x_i : A_i}{t_i}{B}}{i}} + \infer2{\judgement{\Gamma}{\casetm{t}{x_i}{t_i}{i}}{B}} + \end{prooftree} + \\\\ + \multicolumn{2}{c}{ + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{\sub{A}{X/\mu X. A}}} + \infer1{\judgement{\Gamma}{\roll~t}{\mu X. A}} + \end{prooftree} + } + & + \multicolumn{2}{c}{ + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{\mu X. A}} + \hypo{\judgement{\Gamma, x : \sub{A}{X/B}}{u}{B}} + \infer2{\judgement{\Gamma}{\foldtm{t}{x}{u}}{B}} + \end{prooftree} + } + \end{array} + \] + \caption{Typing judgements for \lang{}}\label{fig:artist-types} \end{figure} -Using these typing rules, we can derive a map operation for any \emph{functor}, -a type with a single free type variable: -\[ -\begin{prooftree} - \hypo{\jdgmnt{ty}{X}{F}} - \hypo{\jdgmnt{ty}{}{B}} - \hypo{\jdgmnt{ty}{}{C}} - \infer3{ - \judgement - {\Gamma} - {\maptm{X}{F}^{A, B}} - {(A \to B) \to \sub{F}{X/A} \to \sub{F}{X/B}}} -\end{prooftree} -\] -The definition of \mapkw, \cref{fig:lang-map}, proceeds by \TODO{induction}. We -will elide the superscripts. The hardest case to understand is recursive types -\(\mu Y. A\). Given a value of type \(\mu Y. \sub{G}{X/B}\), we need to -construct a value of type \(\mu Y. \sub{G}{X/C}\). By folding over the given -value, we need to map \(\sub{G}{X/B, Y/\mu Y. \sub{G}{X/C}}\) into \(\mu Y. -\sub{G}{X/C}\). We can construct such a value by rolling, thus we need to -produce a value of type \(\sub{G}{X/C, Y/\mu Y.\sub{G}{X/C}}\). Note that our -given value from the fold and the result we want to roll both agree on the type -of \(Y\) within \(G\), and only disagree on the type assigned to \(X\). Thus we -use map recursively. +\Cref{fig:artist-types} gives the typing judgements for \lang{}. The +introduction and elimination rules for functions, products and sums are +standard, as are the rules for variables and let bindings. The \roll{} operator +introduces an inductive type \(\mu X. A\), by acting as the algebraic map for the +weak initial \(A\)-algebra. The only eliminator for inductive types is \foldkw{}. +Given a target of type \(\mu X. A\), the body of the fold is an \(A\)-algebraic +map. Because \(\mu X. A\) is the weak initial \(A\)-algebra, we can thus construct +an inhabitant of \(B\). -\begin{figure} +As a concrete example, consider the type \(\mathsf{Tree} \coloneq \mu X. 1 + (X \times +X)\) of unlabeled binary trees. By combining injections with \roll{}, we can +form two constructors of this type: \begin{align*} - \maptm{X}{X}^{A,B}~f~t &= f~t \\ - \maptm{X}{Y}^{A,B}~f~t &= t \qquad\qquad (Y \neq X) \\ - \maptm{X}{A \to B}^{C,D}~f~t &= t \\ - \maptm{X}{\prod_i^n A_i}^{B,C}~f~t &= - \tuple*{\rangeover{\maptm{X}{A_i}^{B,C}~f~t.i}{i<n}} \\ - \maptm{X}{\sum_i^n A_i}^{B,C}~f~t &= - \casetm{t}{x_i}{\tuple{i, \maptm{X}{A_i}^{B,C}~f~x_i}}{i}{n} \\ - \maptm{X}{\mu Y.A}^{B,C}~f~t &= - \foldtm{t}{x}{\mathsf{roll}~(\maptm{X}{\sub{A}{Y/\mu Y.\sub{A}{X/C}}}^{B,C}~f~x)} + \mathsf{leaf} &\coloneq \roll~\tuple{0, \tuple{}} &&: \mathsf{Tree} \\ + \mathsf{branch} &\coloneq \lambda x. \roll~\tuple{1, x} &&: \mathsf{Tree} \times \mathsf{Tree} \to \mathsf{Tree} \end{align*} -\caption{Definition of \(\mathsf{map}\)}% -\label{fig:lang-map} -\end{figure} +and given a base case \(l : A\) and accumulator \(r : A \times A \to A\), we +can fold over a tree \(t\) with the term +\[ \dofold{t}{x}{\domatch{x}{0,\tuple{}. l; 1,y. r~y}} \] -\Cref{fig:lang-eq} shows the equational theory for \lang{}. We have the standard -\(\beta\) equalities for functions, products and sums. We do not have \(\eta\) -equalities for products or sums as these are no satisfied by the System~T -embedding. We also don't have \(\eta\) equalities for functions as our -equational theory for System~T does not have them either. The \(\beta\) law for -recursive types depends on the map operation. - -\begin{figure} +From the core of \lang{} we can further derive a number of useful operators. One +of these is \mapkw, which lifts a function from type \(B \to C\) to \(\sub{A}{X/B} +\to \sub{A}{X/C}\). We define \(\maptm{X}{A}\) by induction on the well-formedness +derivation \(\jdgmnt{ty}{\Psi}{A}\), with our chosen variable \(X \in \Psi\). \begin{align*} - (t : A) &= t \\ - (\lambda x.~t)~u &= \sub{t}{x/u} \\ - \tuple*{\rangeover{t_i}{i<n}}.k &= t_k \\ - \casetm{\tuple{k, t}}{x_i}{u_i}{i}{n} &= \sub{u_k}{x_k/t} \\ - \foldtm{\mathsf{roll}~t}{x}{u} &= - \sub{u}{x/\maptm{X}{A}~(\lambda y.~\foldtm{y}{x}{u})~t} + \maptm{X}{X} &\coloneq \lambda f, x. f~x \\ + \maptm{X}{Y} &\coloneq \lambda f, x. x && (X \neq Y)\\ + \maptm{X}{A \to B} &\coloneq \lambda f, x. x \\ + \maptm{X}{\prod_i A_i} &\coloneq \lambda f, x. \tuple{\rangeover{\maptm{X}{A_i}~f~x.i}{i}} \\ + \maptm{X}{\sum_i A_i} &\coloneq + \lambda f, x. \casetm{x}{x_i}{\tuple{i, \maptm{X}{A_i}~f~x_i}}{i} \\ + \maptm{X}{\mu Y. A} &\coloneq + \lambda f, x. + \dofold{x}{y}{\roll~(\maptm{X}{\sub{A}{Y/\mu Y. \sub{A}{X/C}}}~f~y)} \end{align*} -\caption{Equational theory for \lang{}}% -\label{fig:lang-eq} +\begin{proposition} +The following typing judgement for \mapkw{} is sound. +\begin{prooftree*} + \hypo{\jdgmnt{ty}{X}{A}} + \infer1{\judgement{\Gamma}{\maptm{X}{A}}{(B \to C) \to \sub{A}{X/B} \to \sub{A}{X/C}}} +\end{prooftree*} +\end{proposition} + +In \cref{subsec:encoding-strategies} we claimed that the three important operations +for inductive types are constructors, folding and pattern matching. The core of +\lang{} has constructors via the \roll{} operator and folding via \foldkw{}, yet +it does not have pattern matching. We can derive pattern matching from the +\unroll{} operator, defined as +\begin{gather*} + \unroll_{\mu X. A}~t \coloneq \dofold{t}{x}{\maptm{X}{A}~\roll~x}. +\shortintertext{with the derived typing judgement} + \begin{prooftree} + \hypo{\judgement{\Gamma}{t}{\mu X. A}} + \infer1{\judgement{\Gamma}{\unroll~t}{\sub{A}{X/\mu X. A}}} + \end{prooftree} +\end{gather*} +where variable \(x\) has type \(\sub{A}{X/\sub{A}{X/\mu X. A}}\). We have +decided against adding \unroll{} to the core language. The main reason is that +for our encoding into System~T, it is difficult to encode the \unroll{} operator +such that \(\unroll~(\roll~t) = t\). The best encodings we found were +contextually equivalent, so we exclude \unroll{} from the core language so users +do not accidentally depend on an equation that does not hold. + +\begin{figure} + \begin{align*} + (\lambda x. t)~u &\coloneq \sub{t}{x/u} + & + \casetm{\tuple{k, t}}{x_i}{u_i}{i} &\coloneq \sub{u_k}{x_k/t} + \\ + \tuple{\rangeover{t_i}{i}}.k &\coloneq t_k + & + \dofold{\roll~t}{x}{u} &\coloneq \sub{u}{x/\mapkw{}~(\lambda y. \dofold{y}{x}{u})~t} + \end{align*} + \caption{The equational theory of \lang{}}\label{fig:lang-theory} \end{figure} -\begin{example} - We can use folding and \(\mapkw\) do derive an \emph{unrolling} operation - \begin{gather*} - \mathsf{unroll}_{X. A}~t \coloneq \foldtm{t}{x}{\maptm{X}{A}~\mathsf{roll}~x} \\ - \shortintertext{with typing rule} - \begin{prooftree} - \hypo{\judgement{\Gamma}{t}{\mu X. A}} - \infer1{\judgement{\Gamma}{\mathsf{unroll}~t}{\sub{A}{X/\mu X. A}}} - \end{prooftree} \\ - \shortintertext{From the equational theory, we find} - \mathsf{unroll}~(\mathsf{roll}~t) = - \maptm{X}{A}~\mathsf{roll}~(\maptm{X}{A}~\mathsf{unroll}~t) - \end{gather*} - which in general doesn't simplify further. -\end{example} +The equational theory for \lang{} is shown in \cref{fig:lang-theory}. The +equations for functions, products and sums are standard \(\beta\)-reductions. +Reducing inductive types requires the \mapkw{} operator, as folding a +value requires folding on all recursive values too. \end{document} |