diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2022-01-05 15:51:09 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2022-01-05 15:51:09 +0000 |
commit | 729a483d9ab25b0cfb2471b22d723960c7f21b0d (patch) | |
tree | e9c70de409ecffe67a6b11b6435a22e67a3e027d | |
parent | 4d9a1102c3259b0d22787bb83eef652e3e870257 (diff) |
I: 1: b: show ≡ ≇ ≤ in Preorders
-rw-r--r-- | src/CatTheory/Exercise1/Contradiction/PreordersEqualEqLessEqual.agda | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/src/CatTheory/Exercise1/Contradiction/PreordersEqualEqLessEqual.agda b/src/CatTheory/Exercise1/Contradiction/PreordersEqualEqLessEqual.agda new file mode 100644 index 0000000..30b5264 --- /dev/null +++ b/src/CatTheory/Exercise1/Contradiction/PreordersEqualEqLessEqual.agda @@ -0,0 +1,38 @@ +{-# OPTIONS --safe --without-K #-} + +module CatTheory.Exercise1.Contradiction.PreordersEqualEqLessEqual where + +open import Categories.Category using (Category) + +import Categories.Morphism as Morphism +import Categories.Morphism.Properties as Morphismₚ +open import CatTheory.Category.Instance.Preorders using (Preorders) +open import Data.Fin using (Fin; zero; suc) +open import Data.Fin.Properties using (≤-preorder) +open import Data.Nat using (z≤n) +open import Function using (_$_) +open import Function.Equality using (_⟨$⟩_) +open import Level using (0ℓ) +open import Relation.Binary.Morphism.Bundles using (PreorderHomomorphism) +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary using (¬_) +open import Relation.Nullary.Negation using (contradiction) + +open Category (Preorders 0ℓ 0ℓ 0ℓ) +open Morphism (Preorders 0ℓ 0ℓ 0ℓ) +open Morphismₚ (Preorders 0ℓ 0ℓ 0ℓ) + +open PreorderHomomorphism using (⟦_⟧; mono) + +≡≇≤ : ¬ preorder (Fin 2) ≅ ≤-preorder 2 +≡≇≤ ≡≅≤ = contradiction helper λ () + where + open _≅_ ≡≅≤ + open ≡-Reasoning + + helper : zero {1} ≡ suc zero + helper = begin + zero ≡˘⟨ isoʳ ⟩ + ⟦ from ⟧ (⟦ to ⟧ zero) ≡⟨ cong ⟦ from ⟧ (mono to z≤n) ⟩ + ⟦ from ⟧ (⟦ to ⟧ (suc zero)) ≡⟨ isoʳ ⟩ + suc zero ∎ |