summaryrefslogtreecommitdiff
path: root/src/CBPV/Frex/Comp.agda
blob: 843ea5278c98d94e504fe217794d8c64b6def246 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
open import Data.List using (List)

open import CBPV.Structure
open import CBPV.Type

module CBPV.Frex.Comp
  {A : RawAlgebra} (Aᴹ : IsModel A)
  (Θ : List ValType) (Ψ : List CompType) (T : CompType)
  where

open import Function.Base using (_∘_; _$_)
open import Function.Nary.NonDependent using (congₙ)
open import Relation.Binary.PropositionalEquality.Core
open import Relation.Binary.PropositionalEquality using (module ≡-Reasoning)

open ≡-Reasoning

open import CBPV.Context
open import CBPV.Family

private
  variable
    Γ Δ Π : Context
    x y : Name
    A′ A′′ : ValType
    B : CompType

  module A where
    open RawAlgebra A public
    open IsModel Aᴹ public

  ⟦T⟧ : ValType
  ⟦T⟧ = U (Θ ⟶⋆ Ψ ⟶′⋆ T)

  𝔐 : Context
  𝔐 = [< 𝔪 :- ⟦T⟧ ]

-- Helper

cast : Γ ~[ δᵗ 𝔐 A.Val ]↝ Δ → Γ ~[ A.Val ]↝ Δ ++ 𝔐
cast σ = σ ⨾ λ ◌ → ◌

cast≈ : {σ ς : Γ ~[ δᵗ 𝔐 A.Val ]↝ Δ} → σ ≈ ς → cast σ ≈ cast ς
cast≈ σ≈ς @ i = σ≈ς @ i

-- Monoid Structure

open RawMonoid

frexMonoid : RawMonoid
frexMonoid .Val = δᵗ 𝔐 A.Val
frexMonoid .Comp = δᵗ 𝔐 A.Comp
frexMonoid .var i = A.var (i ↑)
frexMonoid .subᵛ v σ = A.subᵛ v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexMonoid .subᶜ c σ = A.subᶜ c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))

open IsMonoid

frexIsMonoid : IsMonoid frexMonoid
frexIsMonoid .subᵛ-cong v σ≈ς = A.subᵛ-cong v (cast≈ σ≈ς :< 𝔪 ⇒ refl)
frexIsMonoid .subᶜ-cong c σ≈ς = A.subᶜ-cong c (cast≈ σ≈ς :< 𝔪 ⇒ refl)
frexIsMonoid .subᵛ-var i σ = A.subᵛ-var (i ↑) _
frexIsMonoid .renᵛ-id v = begin
  A.subᵛ v (tabulate (A.var ∘ _↑[ 𝔪 ]) :< 𝔪 ↦ A.var (%% 𝔪)) ≡⟨ A.subᵛ-cong v (tabulate≈ (λ _ → refl) :< 𝔪 ⇒ refl) ⟩
  A.renᵛ v id                                               ≡⟨ A.renᵛ-id v ⟩
  v                                                         ∎
frexIsMonoid .subᵛ-assoc v σ ς =
  begin
    A.subᵛ (A.subᵛ v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))) (cast ς :< 𝔪 ↦ A.var (%% 𝔪))
  ≡⟨ A.subᵛ-assoc v _ _ ⟩
    A.subᵛ v ((cast σ :< 𝔪 ↦ A.var (%% 𝔪)) ⨾ λ ◌ → A.subᵛ ◌ (cast ς :< 𝔪 ↦ A.var (%% 𝔪)))
  ≡⟨ A.subᵛ-cong v (tabulate≈ (λ _ → refl) :< 𝔪 ⇒ A.subᵛ-var (%% 𝔪) (cast ς :< 𝔪 ↦ A.var (%% 𝔪))) ⟩
    A.subᵛ v (cast (σ ⨾ λ ◌ → A.subᵛ ◌ (cast ς :< 𝔪 ↦ A.var (%% 𝔪))) :< 𝔪 ↦ A.var (%% 𝔪))
  ∎
frexIsMonoid .renᶜ-id c = begin
  A.subᶜ c (tabulate (A.var ∘ _↑[ 𝔪 ]) :< 𝔪 ↦ A.var (%% 𝔪)) ≡⟨ A.subᶜ-cong c (tabulate≈ (λ _ → refl) :< 𝔪 ⇒ refl) ⟩
  A.renᶜ c id                                               ≡⟨ A.renᶜ-id c ⟩
  c                                                         ∎
frexIsMonoid .subᶜ-assoc c σ ς =
  begin
    A.subᶜ (A.subᶜ c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))) (cast ς :< 𝔪 ↦ A.var (%% 𝔪))
  ≡⟨ A.subᶜ-assoc c _ _ ⟩
    A.subᶜ c ((cast σ :< 𝔪 ↦ A.var (%% 𝔪)) ⨾ λ ◌ → A.subᵛ ◌ (cast ς :< 𝔪 ↦ A.var (%% 𝔪)))
  ≡⟨ A.subᶜ-cong c (tabulate≈ (λ _ → refl) :< 𝔪 ⇒ A.subᵛ-var (%% 𝔪) (cast ς :< 𝔪 ↦ A.var (%% 𝔪))) ⟩
    A.subᶜ c (cast (σ ⨾ λ ◌ → A.subᵛ ◌ (cast ς :< 𝔪 ↦ A.var (%% 𝔪))) :< 𝔪 ↦ A.var (%% 𝔪))
  ∎

open RawAlgebra
  renaming
    ( have_be_ to [_]have_be_
    ; drop_then_ to [_]drop_then_
    ; ⟨_,_⟩ to [_]⟨_,_⟩
    ; split_then_ to [_]split_then_
    ; case_of_or_ to [_]case_of_or_
    ; bind_to_ to [_]bind_to_
    ; ⟪_,_⟫ to [_]⟪_,_⟫
    ; push_then_ to [_]push_then_
    )

pull₁ : Γ :< x :- A′ :< 𝔪 :- ⟦T⟧ ↝ Γ :< 𝔪 :- ⟦T⟧ :< x :- A′
pull₁ {x = x} = weakl _ :< x ↦ %% x :< 𝔪 ↦ %% 𝔪

pull₂ : Γ :< x :- A′ :< y :- A′′ :< 𝔪 :- ⟦T⟧ ↝ Γ :< 𝔪 :- ⟦T⟧ :< x :- A′ :< y :- A′′
pull₂ {x = x} {y = y} = weakl _ :< x ↦ %% x :< y ↦ %% y :< 𝔪 ↦ %% 𝔪

frexAlgebra : RawAlgebra
frexAlgebra .monoid = frexMonoid
[ frexAlgebra ]have v be c = A.have v be A.renᶜ c pull₁
frexAlgebra .thunk c = A.thunk c
frexAlgebra .force v = A.force v
frexAlgebra .point = A.point
[ frexAlgebra ]drop v then c = A.drop v then c
[ frexAlgebra ]⟨ v , w ⟩ = A.⟨ v , w ⟩
[ frexAlgebra ]split v then c = A.split v then A.renᶜ c pull₂
frexAlgebra .inl v = A.inl v
frexAlgebra .inr v = A.inr v
[ frexAlgebra ]case v of c or d =
  A.case v
  of A.renᶜ c pull₁
  or A.renᶜ d pull₁
frexAlgebra .ret v = A.ret v
[ frexAlgebra ]bind c to d = A.bind c to A.renᶜ d pull₁
[ frexAlgebra ]⟪ c , d ⟫ = A.⟪ c , d ⟫
frexAlgebra .fst c = A.fst c
frexAlgebra .snd c = A.snd c
frexAlgebra .pop c = A.pop (A.renᶜ c pull₁)
[ frexAlgebra ]push v then c = A.push v then c

private module X = RawAlgebra frexAlgebra

open IsAlgebra

lemma₀ : (v : X.Val A′ Γ) (ρ : Γ ↝ Δ) → X.renᵛ v ρ ≡ A.renᵛ v (lift′ [< 𝔪 :- ⟦T⟧ ] ρ)
lemma₀ v ρ = A.subᵛ-cong v (tabulate≈ (λ _ → refl) :< 𝔪 ⇒ refl)

lemma₁ :
  (c : δᵗ [< x :- A′ ] X.Comp B Γ) (σ : Γ ~[ X.Val ]↝ Δ) →
  A.subᶜ (A.renᶜ c pull₁) (A.lift [< x :- A′ ] (cast σ :< 𝔪 ↦ A.var (%% 𝔪))) ≡
  A.renᶜ (X.subᶜ c (X.lift [< x :- A′ ] σ)) pull₁
lemma₁ {x = x} c σ =
  begin
    A.subᶜ (A.renᶜ c pull₁) (A.lift [< x :- _ ] (cast σ :< 𝔪 ↦ A.var (%% 𝔪)))
  ≡⟨ A.subᶜ-renᶜ c _ _ ⟩
    A.subᶜ c (pull₁ ⨾′ A.lift [< x :- _ ] (cast σ :< 𝔪 ↦ A.var (%% 𝔪)))
  ≡˘⟨ A.subᶜ-cong c
       (  tabulate≈ (λ i →
            begin
              A.renᵛ
                (A.subᵛ (σ @ i) (cast (weakl [< x :- _ , 𝔪 :- _ ] ⨾ A.var) :< 𝔪 ↦ A.var (%% 𝔪)))
                pull₁
            ≡⟨ A.subᵛ-assoc (σ @ i) _ _ ⟩
              A.subᵛ (σ @ i)
                ( (cast (weakl [< x :- _ , 𝔪 :- _ ] ⨾ A.var) :< 𝔪 ↦ A.var (%% 𝔪))
                ⨾ λ ◌ → A.renᵛ ◌ pull₁)
            ≡⟨ A.subᵛ-cong (σ @ i)
                  (  tabulate≈ (λ i → A.renᵛ-var (i ↑ ↑) pull₁)
                  :< 𝔪 ⇒ A.renᵛ-var (%% 𝔪) pull₁) ⟩
              A.renᵛ (σ @ i) (weakl [< x :- _ ])
            ∎)
       :< x ⇒ A.renᵛ-var (%% x) pull₁
       :< 𝔪 ⇒ (begin
         A.renᵛ (A.var $ %% 𝔪) pull₁                       ≡⟨ A.renᵛ-var (%% 𝔪) pull₁ ⟩
         A.var (%% 𝔪)                                      ≡˘⟨ A.renᵛ-var (MkVar 𝔪 Here) (weakl [< x :- _ ]) ⟩
         A.renᵛ (A.var $ MkVar 𝔪 Here) (weakl [< x :- _ ]) ∎)
       ) ⟩
    A.subᶜ c
      ( (cast (X.lift [< x :- _ ] σ) :< 𝔪 ↦ A.var (%% 𝔪))
      ⨾ λ ◌ → A.renᵛ ◌ pull₁
      )
  ≡˘⟨ A.subᶜ-assoc c _ _ ⟩
    A.renᶜ (X.subᶜ c (X.lift [< x :- _ ] σ)) pull₁
  ∎

frexIsAlgebra : IsAlgebra frexAlgebra
frexIsAlgebra .isMonoid = frexIsMonoid
frexIsAlgebra .sub-have v c σ =
  begin
    A.subᶜ
      (A.have v be A.renᶜ c pull₁)
      (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
  ≡⟨ A.sub-have v (A.renᶜ c pull₁) _ ⟩
    (A.have A.subᵛ v (cast σ :< 𝔪 ↦ A.var (%% 𝔪)) be
      A.subᶜ
        (A.renᶜ c pull₁)
        (A.lift [< _ :- _ ] (cast σ :< 𝔪 ↦ A.var (%% 𝔪))))
  ≡⟨ cong (λ ◌ → A.have A.subᵛ v (cast σ :< 𝔪 ↦ A.var (%% 𝔪)) be ◌) (lemma₁ c σ) ⟩
    (A.have A.subᵛ v (cast σ :< 𝔪 ↦ A.var (%% 𝔪)) be
      A.renᶜ (X.subᶜ c (X.lift [< _ :- _ ] σ)) pull₁)
  ∎
frexIsAlgebra .sub-thunk c σ = A.sub-thunk c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-force v σ = A.sub-force v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-point σ = A.sub-point (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-drop v c σ = A.sub-drop v c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-pair v w σ = A.sub-pair v w (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-split v c σ = {!A.sub-split!}
frexIsAlgebra .sub-inl v σ = A.sub-inl v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-inr v σ = A.sub-inr v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-case = {!!}
frexIsAlgebra .sub-ret v σ = A.sub-ret v (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-bind = {!!}
frexIsAlgebra .sub-bundle c d σ = A.sub-bundle c d (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-fst c σ = A.sub-fst c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-snd c σ = A.sub-snd c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))
frexIsAlgebra .sub-pop = {!!}
frexIsAlgebra .sub-push v c σ = A.sub-push v c (cast σ :< 𝔪 ↦ A.var (%% 𝔪))