diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 15:30:30 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-24 15:30:30 +0100 |
commit | 0708355c7988345c98961cad087dc56eeb16ea7f (patch) | |
tree | 76f4e4ef3f7a0eb0cf3f40d3d58e3563287044c4 | |
parent | c58866bea6ee251868d98a3da11f64030bb00aa7 (diff) |
Cleanup Derivation.cleanup
-rw-r--r-- | src/Cfe/Derivation/Base.agda | 54 | ||||
-rw-r--r-- | src/Cfe/Derivation/Properties.agda | 152 | ||||
-rw-r--r-- | src/Cfe/Expression/Properties.agda | 34 | ||||
-rw-r--r-- | src/Cfe/Language/Properties.agda | 6 |
4 files changed, 122 insertions, 124 deletions
diff --git a/src/Cfe/Derivation/Base.agda b/src/Cfe/Derivation/Base.agda index ce368d0..0432c3d 100644 --- a/src/Cfe/Derivation/Base.agda +++ b/src/Cfe/Derivation/Base.agda @@ -8,37 +8,41 @@ module Cfe.Derivation.Base open Setoid over renaming (Carrier to C; _≈_ to _∼_) -open import Cfe.Expression over hiding (_≋_) -open import Data.Fin -open import Data.List -open import Data.List.Relation.Binary.Equality.Setoid over +open import Cfe.Expression over hiding (_≈_) +open import Data.Fin using (zero) +open import Data.List using (List; []; [_]; _++_) +open import Data.List.Relation.Binary.Equality.Setoid over using (_≋_) open import Level using (_⊔_) infix 5 _⤇_ infix 4 _≈_ data _⤇_ : Expression 0 → List C → Set (c ⊔ ℓ) where - Eps : ε ⤇ [] + Eps : ε ⤇ [] Char : ∀ {c y} → (c∼y : c ∼ y) → Char c ⤇ [ y ] - Cat : ∀ {e₁ e₂ l₁ l₂ l} → e₁ ⤇ l₁ → e₂ ⤇ l₂ → l₁ ++ l₂ ≋ l → e₁ ∙ e₂ ⤇ l - Veeˡ : ∀ {e₁ e₂ l} → e₁ ⤇ l → e₁ ∨ e₂ ⤇ l - Veeʳ : ∀ {e₁ e₂ l} → e₂ ⤇ l → e₁ ∨ e₂ ⤇ l - Fix : ∀ {e l} → e [ μ e / zero ] ⤇ l → μ e ⤇ l + Cat : ∀ {e₁ e₂ w₁ w₂ w} → e₁ ⤇ w₁ → e₂ ⤇ w₂ → w₁ ++ w₂ ≋ w → e₁ ∙ e₂ ⤇ w + Veeˡ : ∀ {e₁ e₂ w} → e₁ ⤇ w → e₁ ∨ e₂ ⤇ w + Veeʳ : ∀ {e₁ e₂ w} → e₂ ⤇ w → e₁ ∨ e₂ ⤇ w + Fix : ∀ {e w} → e [ μ e / zero ] ⤇ w → μ e ⤇ w -data _≈_ : ∀ {e l l′} → REL (e ⤇ l) (e ⤇ l′) (c ⊔ ℓ) where - Eps : Eps ≈ Eps +data _≈_ : ∀ {e w w′} → REL (e ⤇ w) (e ⤇ w′) (c ⊔ ℓ) where + Eps : Eps ≈ Eps Char : ∀ {c y y′} → (c∼y : c ∼ y) → (c∼y′ : c ∼ y′) → Char c∼y ≈ Char c∼y′ - Cat : ∀ {e₁ e₂ l l₁ l₂ l₁′ l₂′ e₁⤇l₁ e₁⤇l₁′ e₂⤇l₂ e₂⤇l₂′} → - (e₁⤇l₁≈e₁⤇l′ : _≈_ {e₁} {l₁} {l₁′} e₁⤇l₁ e₁⤇l₁′) → - (e₂⤇l₂≈e₂⤇l′ : _≈_ {e₂} {l₂} {l₂′} e₂⤇l₂ e₂⤇l₂′) → - (eq : l₁ ++ l₂ ≋ l) → (eq′ : l₁′ ++ l₂′ ≋ l) → - Cat e₁⤇l₁ e₂⤇l₂ eq ≈ Cat e₁⤇l₁′ e₂⤇l₂′ eq′ - Veeˡ : ∀ {e₁ e₂ l l′ e₁⤇l e₁⤇l′} → - (e₁⤇l≈e₁⤇l′ : _≈_ {e₁} {l} {l′} e₁⤇l e₁⤇l′) → - Veeˡ {e₂ = e₂} e₁⤇l ≈ Veeˡ e₁⤇l′ - Veeʳ : ∀ {e₁ e₂ l l′ e₂⤇l e₂⤇l′} → - (e₂⤇l≈e₂⤇l′ : _≈_ {e₂} {l} {l′} e₂⤇l e₂⤇l′) → - Veeʳ {e₁} e₂⤇l ≈ Veeʳ e₂⤇l′ - Fix : ∀ {e l l′ e[μe/0]⤇l e[μe/0]⤇l′} → - (e[μe/0]⤇l≈e[μe/0]⤇l′ : _≈_ {e [ μ e / zero ]} {l} {l′} e[μe/0]⤇l e[μe/0]⤇l′) → - Fix {e} e[μe/0]⤇l ≈ Fix e[μe/0]⤇l′ + Cat : + ∀ {e₁ e₂ w w₁ w₂ w₁′ w₂′ e₁⤇w₁ e₁⤇w₁′ e₂⤇w₂ e₂⤇w₂′} → + (e₁⤇w₁≈e₁⤇w′ : _≈_ {e₁} {w₁} {w₁′} e₁⤇w₁ e₁⤇w₁′) → + (e₂⤇w₂≈e₂⤇w′ : _≈_ {e₂} {w₂} {w₂′} e₂⤇w₂ e₂⤇w₂′) → + (eq : w₁ ++ w₂ ≋ w) → (eq′ : w₁′ ++ w₂′ ≋ w) → + Cat e₁⤇w₁ e₂⤇w₂ eq ≈ Cat e₁⤇w₁′ e₂⤇w₂′ eq′ + Veeˡ : + ∀ {e₁ e₂ w w′ e₁⤇w e₁⤇w′} → + (e₁⤇w≈e₁⤇w′ : _≈_ {e₁} {w} {w′} e₁⤇w e₁⤇w′) → + Veeˡ {e₂ = e₂} e₁⤇w ≈ Veeˡ e₁⤇w′ + Veeʳ : + ∀ {e₁ e₂ w w′ e₂⤇w e₂⤇w′} → + (e₂⤇w≈e₂⤇w′ : _≈_ {e₂} {w} {w′} e₂⤇w e₂⤇w′) → + Veeʳ {e₁} e₂⤇w ≈ Veeʳ e₂⤇w′ + Fix : + ∀ {e w w′ e[μe/0]⤇w e[μe/0]⤇w′} → + (e[μe/0]⤇w≈e[μe/0]⤇w′ : _≈_ {e [ μ e / zero ]} {w} {w′} e[μe/0]⤇w e[μe/0]⤇w′) → + Fix {e} e[μe/0]⤇w ≈ Fix e[μe/0]⤇w′ diff --git a/src/Cfe/Derivation/Properties.agda b/src/Cfe/Derivation/Properties.agda index e89d9f1..d922f2a 100644 --- a/src/Cfe/Derivation/Properties.agda +++ b/src/Cfe/Derivation/Properties.agda @@ -6,111 +6,69 @@ module Cfe.Derivation.Properties {c ℓ} (over : Setoid c ℓ) where -open Setoid over renaming (Carrier to C; _≈_ to _∼_) +open Setoid over using () renaming (Carrier to C) -open import Cfe.Context over hiding (_≋_) -open import Cfe.Expression over hiding (_≋_) -open import Cfe.Language over hiding (≤-refl; _≈_; _<_) -open import Cfe.Language.Construct.Concatenate over using (Concat) -open import Cfe.Language.Indexed.Construct.Iterate over -open import Cfe.Judgement over +open import Cfe.Context over using (∙,∙) open import Cfe.Derivation.Base over +open import Cfe.Expression over +open import Cfe.Fin using (zero) +open import Cfe.Judgement over +open import Cfe.Language over hiding (_∙_) open import Cfe.Type over using (_⊛_; _⊨_) -open import Data.Bool using (T; not; true; false) -open import Data.Empty using (⊥-elim) -open import Data.Fin as F hiding (_<_) -open import Data.List hiding (null) -open import Data.List.Relation.Binary.Equality.Setoid over -open import Data.Nat as ℕ hiding (_⊔_; _^_; _<_) -open import Data.Nat.Properties using (≤-step; m≤m+n; m≤n+m; ≤-refl; n<1+n; module ≤-Reasoning) -open import Data.Nat.Induction using () renaming (<-wellFounded to <ⁿ-wellFounded) -open import Data.Product as Product -open import Data.Product.Relation.Binary.Lex.Strict -open import Data.Sum as Sum -open import Data.Vec hiding (length; _++_) -open import Data.Vec.Relation.Binary.Pointwise.Inductive -open import Data.Vec.Relation.Binary.Pointwise.Extensional -open import Function +open import Data.Fin using (zero) +open import Data.List using (List; []; length) +open import Data.List.Relation.Binary.Pointwise using ([]; _∷_) +open import Data.Nat.Properties using (n<1+n; module ≤-Reasoning) +open import Data.Product using (_×_; _,_; -,_) +open import Data.Sum using (inj₁; inj₂) +open import Data.Vec using ([]; [_]) +open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_) +open import Function using (_∘_) open import Induction.WellFounded -open import Level -open import Relation.Binary -import Relation.Binary.Construct.On as On -open import Relation.Binary.PropositionalEquality as ≡ hiding (subst₂; setoid) - -private - infix 4 _<_ - _<_ : Rel (List C × Expression 0) _ - _<_ = ×-Lex _≡_ ℕ._<_ _<ᵣₐₙₖ_ on (Product.map₁ length) +open import Level using (_⊔_) +open import Relation.Binary.PropositionalEquality using (refl) +import Relation.Binary.Reasoning.PartialOrder (⊆-poset {c ⊔ ℓ}) as ⊆-Reasoning +open import Relation.Nullary using (¬_) - <-wellFounded : WellFounded _<_ - <-wellFounded = On.wellFounded (Product.map₁ length) (×-wellFounded <ⁿ-wellFounded <ᵣₐₙₖ-wellFounded) - -l∈⟦e⟧⇒e⤇l : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → e ⤇ l -l∈⟦e⟧⇒e⤇l {e} {τ} ∙,∙⊢e∶τ {l} l∈⟦e⟧ = All.wfRec <-wellFounded _ Pred go (l , e) ∙,∙⊢e∶τ l∈⟦e⟧ +w∈⟦e⟧⇒e⤇w : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {w} → w ∈ ⟦ e ⟧ [] → e ⤇ w +w∈⟦e⟧⇒e⤇w {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-wellFounded _ Pred go (w , e) ctx⊢e∶τ w∈⟦e⟧ where - Pred : List C × Expression 0 → Set _ - Pred (l , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → l ∈ ⟦ e ⟧ [] → e ⤇ l - - e[μe/0]<μe : ∀ {e τ} l → ∙,∙ ⊢ μ e ∶ τ → (l , e [ μ e / F.zero ]) < (l , μ e) - e[μe/0]<μe {e} l (Fix ∙,τ⊢e∶τ)= inj₂ (≡.refl , (begin-strict - rank (e [ μ e / F.zero ]) ≡⟨ subst-preserves-rank z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ) ⟩ - rank e <⟨ n<1+n (rank e) ⟩ - ℕ.suc (rank e) ≡⟨⟩ - rank (μ e) ∎)) - where - open ≤-Reasoning + Pred : (List C × Expression 0) → Set _ + Pred (w , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → w ∈ ⟦ e ⟧ [] → e ⤇ w - l₁++l₂≋l⇒∣l₁∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₁ ℕ.< length l) ⊎ (length l₁ ≡ length l) - l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] [] = inj₂ ≡.refl - l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] (_ ∷ _) = inj₁ (s≤s z≤n) - l₁++l₂≋l⇒∣l₁∣≤∣l∣ (_ ∷ l₁) (_ ∷ eq) = Sum.map s≤s (cong ℕ.suc) (l₁++l₂≋l⇒∣l₁∣≤∣l∣ l₁ eq) - - l₁++l₂≋l⇒∣l₂∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₂ ℕ.< length l) ⊎ (length l₁ ≡ 0) - l₁++l₂≋l⇒∣l₂∣≤∣l∣ [] _ = inj₂ ≡.refl - l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ []) (_ ∷ []) = inj₁ (s≤s z≤n) - l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ _ ∷ eq) = inj₁ ([ s≤s , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ eq))) - l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ x ∷ l₁) (_ ∷ eq) = inj₁ ([ ≤-step , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ l₁) eq)) - - e₁<e₁∙e₂ : ∀ {l e₁} e₂ → (l∈⟦e₁∙e₂⟧ : l ∈ ⟦ e₁ ∙ e₂ ⟧ []) → (Concat.l₁ l∈⟦e₁∙e₂⟧ , e₁) < (l , e₁ ∙ e₂) - e₁<e₁∙e₂ _ l∈⟦e₁∙e₂⟧ with l₁++l₂≋l⇒∣l₁∣≤∣l∣ (Concat.l₁ l∈⟦e₁∙e₂⟧) (Concat.eq l∈⟦e₁∙e₂⟧) - ... | inj₁ ∣l₁∣<∣l∣ = inj₁ ∣l₁∣<∣l∣ - ... | inj₂ ∣l₁∣≡∣l∣ = inj₂ (∣l₁∣≡∣l∣ , ≤-refl) - - e₂<e₁∙e₂ : ∀ {l e₁ e₂ τ} → ∙,∙ ⊢ e₁ ∙ e₂ ∶ τ → (l∈⟦e₁∙e₂⟧ : l ∈ ⟦ e₁ ∙ e₂ ⟧ []) → (Concat.l₂ l∈⟦e₁∙e₂⟧ , e₂) < (l , e₁ ∙ e₂) - e₂<e₁∙e₂ (Cat ∙,∙⊢e₁∶τ₁ _ τ₁⊛τ₂) l∈⟦e₁∙e₂⟧ with l₁++l₂≋l⇒∣l₂∣≤∣l∣ (Concat.l₁ l∈⟦e₁∙e₂⟧) (Concat.eq l∈⟦e₁∙e₂⟧) - ... | inj₁ ∣l₂∣<∣l∣ = inj₁ ∣l₂∣<∣l∣ - ... | inj₂ ∣l₁∣≡0 with Concat.l₁ l∈⟦e₁∙e₂⟧ | Concat.l₁∈A l∈⟦e₁∙e₂⟧ | (_⊛_.τ₁.Null τ₁⊛τ₂) | _⊛_.¬n₁ τ₁⊛τ₂ | _⊨_.n⇒n (soundness ∙,∙⊢e₁∶τ₁ [] (ext (λ ()))) | ∣l₁∣≡0 - ... | [] | ε∈A | false | _ | n⇒n | refl = ⊥-elim (n⇒n ε∈A) - - l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ : ∀ {l} e n → l ∈ ((λ X → ⟦ e ⟧ (X ∷ [])) ^ n) (⟦ ⊥ ⟧ []) → l ∈ ⟦ e [ μ e / F.zero ] ⟧ [] - l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ e (suc n) l∈⟦e⟧ⁿ = _≤_.f - (begin - ((λ X → ⟦ e ⟧ (X ∷ [])) ^ (ℕ.suc n)) (⟦ ⊥ ⟧ []) ≡⟨⟩ - ⟦ e ⟧ (((λ X → ⟦ e ⟧ (X ∷ [])) ^ n) (⟦ ⊥ ⟧ []) ∷ []) ≤⟨ mono e (fⁿ≤⋃f (λ X → ⟦ e ⟧ (X ∷ [])) n ∷ []) ⟩ - ⟦ e ⟧ (⋃ (λ X → ⟦ e ⟧ (X ∷ [])) ∷ []) ≡⟨⟩ - ⟦ e ⟧ (⟦ μ e ⟧ [] ∷ []) ≈˘⟨ subst-fun e (μ e) F.zero [] ⟩ - ⟦ e [ μ e / F.zero ] ⟧ [] ∎) - l∈⟦e⟧ⁿ + go : ∀ w,e → WfRec _<ₗₑₓ_ Pred w,e → Pred w,e + go ([] , ε) rec Eps w∈⟦e⟧ = Eps + go (w , Char c) rec (Char c) (c∼y ∷ []) = Char c∼y + go (w , μ e) rec (Fix ctx⊢e∶τ) w∈⟦e⟧ = + Fix (rec + (w , e [ μ e / zero ]) + w,e[μe/0]<ₗₑₓw,μe + (subst₂ ctx⊢e∶τ zero (Fix ctx⊢e∶τ)) + (∈-resp-⊆ ⟦μe⟧⊆⟦e[μe/0]⟧ w∈⟦e⟧)) where - open import Relation.Binary.Reasoning.PartialOrder (poset _) + w,e[μe/0]<ₗₑₓw,μe : (w , e [ μ e / zero ]) <ₗₑₓ (w , μ e) + w,e[μe/0]<ₗₑₓw,μe = inj₂ (refl , (begin-strict + rank (e [ μ e / zero ]) ≡⟨ subst₂-pres-rank ctx⊢e∶τ zero (Fix ctx⊢e∶τ) ⟩ + rank e <⟨ rank-μ e ⟩ + rank (μ e) ∎)) + where open ≤-Reasoning - go : ∀ l,e → WfRec _<_ Pred l,e → Pred l,e - go (l , e) rec Eps (lift refl) = Eps - go (l , e) rec (Char c) (lift (c∼y ∷ [])) = Char c∼y - go (l , μ e) rec (Fix ∙,τ⊢e∶τ) (n , l∈⟦e⟧ⁿ) = - Fix (rec - (l , e [ μ e / F.zero ]) - (e[μe/0]<μe l (Fix ∙,τ⊢e∶τ)) - (subst₂ z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ)) - (l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ e n l∈⟦e⟧ⁿ)) - go (l , e₁ ∙ e₂) rec (∙,∙⊢e₁∙e₂∶τ @ (Cat ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ _)) l∈⟦e⟧ = + ⟦μe⟧⊆⟦e[μe/0]⟧ : ⟦ μ e ⟧ [] ⊆ ⟦ e [ μ e / zero ] ⟧ [] + ⟦μe⟧⊆⟦e[μe/0]⟧ = begin + ⟦ μ e ⟧ [] ≤⟨ ⋃-unroll (⟦⟧-mono-env e ∘ (_∷ [])) ⟩ + ⟦ e ⟧ [ ⟦ μ e ⟧ [] ] ≈˘⟨ subst-cong e (μ e) zero [] ⟩ + ⟦ e [ μ e / zero ] ⟧ [] ∎ + where open ⊆-Reasoning + go (w , e₁ ∙ e₂) rec (Cat ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) (w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq) = Cat - (rec (l∈⟦e⟧.l₁ , e₁) (e₁<e₁∙e₂ e₂ l∈⟦e⟧) ∙,∙⊢e₁∶τ₁ l∈⟦e⟧.l₁∈A) - (rec (l∈⟦e⟧.l₂ , e₂) (e₂<e₁∙e₂ ∙,∙⊢e₁∙e₂∶τ l∈⟦e⟧) ∙,∙⊢e₂∶τ₂ l∈⟦e⟧.l₂∈B) - l∈⟦e⟧.eq + (rec (w₁ , e₁) (lex-∙ˡ e₁ e₂ [] (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₁∶τ₁ w₁∈⟦e₁⟧) + (rec (w₂ , e₂) (lex-∙ʳ e₁ e₂ [] ε∉⟦e₁⟧ (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₂∶τ₂ w₂∈⟦e₂⟧) + eq where - module l∈⟦e⟧ = Concat l∈⟦e⟧ - go (l , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ _ _) (inj₁ l∈⟦e₁⟧) = - Veeˡ (rec (l , e₁) (inj₂ (≡.refl , e₁<ᵣₐₙₖe₁∨e₂ e₁ e₂)) ∙,∙⊢e₁∶τ₁ l∈⟦e₁⟧) - go (l , e₁ ∨ e₂) rec (Vee _ ∙,∙⊢e₂∶τ₂ _) (inj₂ l∈⟦e₂⟧) = - Veeʳ (rec (l , e₂) (inj₂ (≡.refl , e₂<ᵣₐₙₖe₁∨e₂ e₁ e₂)) ∙,∙⊢e₂∶τ₂ l∈⟦e₂⟧) + open _⊛_ τ₁⊛τ₂ using (¬n₁) + ε∉⟦e₁⟧ : ¬ Null (⟦ e₁ ⟧ []) + ε∉⟦e₁⟧ = ¬n₁ ∘ _⊨_.n⇒n (soundness ctx⊢e₁∶τ₁ [] []) + go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (inj₁ w∈⟦e₁⟧) = + Veeˡ (rec (w , e₁) (inj₂ (refl , rank-∨ˡ e₁ e₂)) ctx⊢e₁∶τ₁ w∈⟦e₁⟧) + go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (inj₂ w∈⟦e₂⟧) = + Veeʳ (rec (w , e₂) (inj₂ (refl , rank-∨ʳ e₁ e₂)) ctx⊢e₂∶τ₂ w∈⟦e₂⟧) diff --git a/src/Cfe/Expression/Properties.agda b/src/Cfe/Expression/Properties.agda index 40d569a..d994fe6 100644 --- a/src/Cfe/Expression/Properties.agda +++ b/src/Cfe/Expression/Properties.agda @@ -39,14 +39,18 @@ open import Data.List using (List; length; _++_) open import Data.List.Properties using (length-++) open import Data.List.Relation.Binary.Pointwise using (Pointwise-length) open import Data.Nat hiding (_≟_; _⊔_; _^_) +open import Data.Nat.Induction using (<-wellFounded) open import Data.Nat.Properties hiding (_≟_) open import Data.Product +open import Data.Product.Relation.Binary.Lex.Strict using (×-wellFounded) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Vec hiding (length; _++_) open import Data.Vec.Properties open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW hiding (refl; sym; trans; setoid; lookup) +open import Induction.WellFounded using (WellFounded) open import Level using (_⊔_) +open import Relation.Binary.Construct.On using () renaming (wellFounded to on-wellFounded) open import Relation.Binary.PropositionalEquality hiding (setoid) open import Relation.Nullary @@ -154,6 +158,16 @@ _<ₗₑₓ_ : REL (List C × Expression m) (List C × Expression n) _ <ₗₑₓ-asym (inj₂ (_ , r₁<r₂)) (inj₂ (_ , r₂<r₁)) = <ᵣₐₙₖ-asym r₁<r₂ r₂<r₁ ------------------------------------------------------------------------ +-- Induction properties + +<ᵣₐₙₖ-wellFounded : WellFounded (_<ᵣₐₙₖ_ {n}) +<ᵣₐₙₖ-wellFounded = on-wellFounded rank <-wellFounded + +<ₗₑₓ-wellFounded : WellFounded (_<ₗₑₓ_ {n}) +<ₗₑₓ-wellFounded = on-wellFounded (map₁ length) (×-wellFounded <-wellFounded <ᵣₐₙₖ-wellFounded) + + +------------------------------------------------------------------------ -- Other properties rank-∨ˡ : ∀ (e₁ e₂ : Expression n) → e₁ <ᵣₐₙₖ e₁ ∨ e₂ @@ -175,6 +189,23 @@ rank-∨ʳ e₁ e₂ = begin-strict rank-∙ˡ : ∀ (e₁ e₂ : Expression n) → e₁ <ᵣₐₙₖ e₁ ∙ e₂ rank-∙ˡ e₁ _ = n<1+n (rank e₁) +lex-∙ˡ : + ∀ (e₁ e₂ : Expression n) γ → + ∀ {w} → (w∈⟦e₁∙e₂⟧ : w ∈ ⟦ e₁ ∙ e₂ ⟧ γ) → + let w₁ = proj₁ w∈⟦e₁∙e₂⟧ in + (w₁ , e₁) <ₗₑₓ (w , e₁ ∙ e₂) +lex-∙ˡ e₁ e₂ γ {w} (w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq) with m≤n⇒m<n∨m≡n ∣w₁∣≤∣w∣ + where + open ≤-Reasoning + ∣w₁∣≤∣w∣ : length w₁ ≤ length w + ∣w₁∣≤∣w∣ = begin + length w₁ ≤⟨ m≤m+n (length w₁) (length w₂) ⟩ + length w₁ + length w₂ ≡˘⟨ length-++ w₁ ⟩ + length (w₁ ++ w₂) ≡⟨ Pointwise-length eq ⟩ + length w ∎ +... | inj₁ ∣w₁∣<∣w∣ = inj₁ ∣w₁∣<∣w∣ +... | inj₂ ∣w₁∣≡∣w∣ = inj₂ (∣w₁∣≡∣w∣ , rank-∙ˡ e₁ e₂) + lex-∙ʳ : ∀ (e₁ e₂ : Expression n) γ → ¬ Null (⟦ e₁ ⟧ γ) → ∀ {w} → (w∈⟦e₁∙e₂⟧ : w ∈ ⟦ e₁ ∙ e₂ ⟧ γ) → @@ -182,14 +213,13 @@ lex-∙ʳ : (w₂ , e₂) <ₗₑₓ (w , e₁ ∙ e₂) lex-∙ʳ e₁ _ γ ε∉⟦e₁⟧ {w} (w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq) with m≤n⇒m<n∨m≡n ∣w₂∣≤∣w∣ where + open ≤-Reasoning ∣w₂∣≤∣w∣ : length w₂ ≤ length w ∣w₂∣≤∣w∣ = begin length w₂ ≤⟨ m≤n+m (length w₂) (length w₁) ⟩ length w₁ + length w₂ ≡˘⟨ length-++ w₁ ⟩ length (w₁ ++ w₂) ≡⟨ Pointwise-length eq ⟩ length w ∎ - where - open ≤-Reasoning ... | inj₁ ∣w₂∣<∣w∣ = inj₁ ∣w₂∣<∣w∣ ... | inj₂ ∣w₂∣≡∣w∣ = ⊥-elim (ε∉⟦e₁⟧ (∣w∣≡0+w∈A⇒ε∈A {A = ⟦ e₁ ⟧ γ} ∣w₁∣≡0 w₁∈⟦e₁⟧)) where diff --git a/src/Cfe/Language/Properties.agda b/src/Cfe/Language/Properties.agda index 13e5ab1..fe153b1 100644 --- a/src/Cfe/Language/Properties.agda +++ b/src/Cfe/Language/Properties.agda @@ -850,6 +850,12 @@ Fⁿ⊆⋃F = FⁿA⊆SupFA ⋃-inverseʳ : ∀ (A : Language a) → ⋃ (const A) ≈ A ⋃-inverseʳ _ = ⊆-antisym (sub λ {(ℕ.suc _ , w∈A) → w∈A}) (Fⁿ⊆⋃F 1) +⋃-unroll : (∀ {A B} → A ⊆ B → F A ⊆ F B) → ⋃ F ⊆ F (⋃ F) +⋃-unroll {F = F} mono-ext = ∀[Fⁿ⊆B]⇒⋃F⊆B λ + { ℕ.zero → ⊆-min (F (⋃ F)) + ; (ℕ.suc n) → mono-ext (Fⁿ⊆⋃F n) + } + ------------------------------------------------------------------------ -- Other properties of Null ------------------------------------------------------------------------ |