diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-16 18:45:27 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-16 18:45:27 +0000 |
commit | 02a0f87be944b1d43fda265058b891f419d25b65 (patch) | |
tree | a6b289f1055dfa26efe276c503851db785d47f98 | |
parent | 26925a4f41ed14881846648bf43448d07f1873d7 (diff) |
Change Language definition to respects instead of custom congruence.
-rw-r--r-- | src/Cfe/Expression/Base.agda | 19 | ||||
-rw-r--r-- | src/Cfe/Expression/Properties.agda | 70 | ||||
-rw-r--r-- | src/Cfe/Judgement/Base.agda | 2 | ||||
-rw-r--r-- | src/Cfe/Judgement/Properties.agda | 112 | ||||
-rw-r--r-- | src/Cfe/Language/Base.agda | 95 | ||||
-rw-r--r-- | src/Cfe/Language/Construct/Concatenate.agda | 116 | ||||
-rw-r--r-- | src/Cfe/Language/Construct/Single.agda | 15 | ||||
-rw-r--r-- | src/Cfe/Language/Construct/Union.agda | 44 | ||||
-rw-r--r-- | src/Cfe/Language/Indexed/Construct/Iterate.agda | 52 | ||||
-rw-r--r-- | src/Cfe/Language/Indexed/Homogeneous.agda | 7 | ||||
-rw-r--r-- | src/Cfe/Language/Properties.agda | 42 | ||||
-rw-r--r-- | src/Cfe/Type/Base.agda | 2 | ||||
-rw-r--r-- | src/Cfe/Type/Properties.agda | 22 |
13 files changed, 238 insertions, 360 deletions
diff --git a/src/Cfe/Expression/Base.agda b/src/Cfe/Expression/Base.agda index f4a8dc0..2023a71 100644 --- a/src/Cfe/Expression/Base.agda +++ b/src/Cfe/Expression/Base.agda @@ -66,10 +66,21 @@ Var j [ e′ / i ] with i F.≟ j ... | no i≢j = Var (punchOut i≢j) μ e [ e′ / i ] = μ (e [ wkn e′ F.zero / suc i ]) -⟦_⟧ : ∀ {n : ℕ} → Expression n → Vec (Language (c ⊔ ℓ) (c ⊔ ℓ)) n → Language (c ⊔ ℓ) (c ⊔ ℓ) -⟦ ⊥ ⟧ _ = Lift (c ⊔ ℓ) (c ⊔ ℓ) ∅ -⟦ ε ⟧ _ = Lift ℓ (c ⊔ ℓ) {ε} -⟦ Char x ⟧ _ = Lift ℓ (c ⊔ ℓ) { x } +shift : ∀ {n} → Expression n → (i j : Fin n) → .(_ : i F.≤ j) → Expression n +shift ⊥ _ _ _ = ⊥ +shift ε _ _ _ = ε +shift (Char x) _ _ _ = Char x +shift (e₁ ∨ e₂) i j i≤j = shift e₁ i j i≤j ∨ shift e₂ i j i≤j +shift (e₁ ∙ e₂) i j i≤j = shift e₁ i j i≤j ∙ shift e₂ i j i≤j +shift {suc n} (Var k) i j _ with i F.≟ k +... | yes i≡k = Var j +... | no i≢k = Var (punchIn j (punchOut i≢k)) +shift (μ e) i j i≤j = μ (shift e (suc i) (suc j) (s≤s i≤j)) + +⟦_⟧ : ∀ {n : ℕ} → Expression n → Vec (Language (c ⊔ ℓ)) n → Language (c ⊔ ℓ) +⟦ ⊥ ⟧ _ = Lift (c ⊔ ℓ) ∅ +⟦ ε ⟧ _ = Lift ℓ {ε} +⟦ Char x ⟧ _ = Lift ℓ { x } ⟦ e₁ ∨ e₂ ⟧ γ = ⟦ e₁ ⟧ γ ∪ ⟦ e₂ ⟧ γ ⟦ e₁ ∙ e₂ ⟧ γ = ⟦ e₁ ⟧ γ ∙ₗ ⟦ e₂ ⟧ γ ⟦ Var n ⟧ γ = lookup γ n diff --git a/src/Cfe/Expression/Properties.agda b/src/Cfe/Expression/Properties.agda index 1e41f42..0b1ae2c 100644 --- a/src/Cfe/Expression/Properties.agda +++ b/src/Cfe/Expression/Properties.agda @@ -70,14 +70,6 @@ isSemiring n = record { (inj₁ (l₁ , l₁∈⟦x⟧ , l₂ , l₂∈⟦y⟧ , l₁++l₂≡l)) → -, l₁∈⟦x⟧ , -, inj₁ l₂∈⟦y⟧ , l₁++l₂≡l ; (inj₂ (l₁ , l₁∈⟦x⟧ , l₂ , l₂∈⟦z⟧ , l₁++l₂≡l)) → -, l₁∈⟦x⟧ , -, inj₂ l₂∈⟦z⟧ , l₁++l₂≡l } - ; cong₁ = λ - { (l₁≈l₁′ , ∪.A≈A l₂≈l₂′) → ∪.A≈A (l₁≈l₁′ , l₂≈l₂′) - ; (l₁≈l₁′ , ∪.B≈B l₂≈l₂′) → ∪.B≈B (l₁≈l₁′ , l₂≈l₂′) - } - ; cong₂ = λ - { (∪.A≈A (l₁≈l₁′ , l₂≈l₂′)) → l₁≈l₁′ , ∪.A≈A l₂≈l₂′ - ; (∪.B≈B (l₁≈l₁′ , l₂≈l₂′)) → l₁≈l₁′ , ∪.B≈B l₂≈l₂′ - } }) , (λ x y z γ → record { f = λ { (l₁ , inj₁ l₁∈⟦y⟧ , l₂ , l₂∈⟦x⟧ , l₁++l₂≡l) → inj₁ (-, l₁∈⟦y⟧ , -, l₂∈⟦x⟧ , l₁++l₂≡l) @@ -87,34 +79,22 @@ isSemiring n = record { (inj₁ (l₁ , l₁∈⟦y⟧ , l₂ , l₂∈⟦x⟧ , l₁++l₂≡l)) → -, inj₁ l₁∈⟦y⟧ , -, l₂∈⟦x⟧ , l₁++l₂≡l ; (inj₂ (l₁ , l₁∈⟦z⟧ , l₂ , l₂∈⟦x⟧ , l₁++l₂≡l)) → -, inj₂ l₁∈⟦z⟧ , -, l₂∈⟦x⟧ , l₁++l₂≡l } - ; cong₁ = λ - { (∪.A≈A l₁≈l₁′ , l₂≈l₂′) → ∪.A≈A (l₁≈l₁′ , l₂≈l₂′) - ; (∪.B≈B l₁≈l₁′ , l₂≈l₂′) → ∪.B≈B (l₁≈l₁′ , l₂≈l₂′) - } - ; cong₂ = λ - { (∪.A≈A (l₁≈l₁′ , l₂≈l₂′)) → ∪.A≈A l₁≈l₁′ , l₂≈l₂′ - ; (∪.B≈B (l₁≈l₁′ , l₂≈l₂′)) → ∪.B≈B l₁≈l₁′ , l₂≈l₂′ - } }) } ; zero = (λ x γ → record { f = λ () ; f⁻¹ = λ () - ; cong₁ = λ {_} {_} {l₁∈⟦⊥∙x⟧} → case l₁∈⟦⊥∙x⟧ of (λ ()) - ; cong₂ = λ {_} {_} {l₁∈⟦⊥⟧} → case l₁∈⟦⊥⟧ of (λ ()) }) , (λ x γ → record { f = λ () ; f⁻¹ = λ () - ; cong₁ = λ {_} {_} {l₁∈⟦x∙⊥⟧} → case l₁∈⟦x∙⊥⟧ of (λ ()) - ; cong₂ = λ {_} {_} {l₁∈⟦⊥⟧} → case l₁∈⟦⊥⟧ of (λ ()) }) } where - module ∪-comm = IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ} {c ⊔ ℓ}) - module ∙-mon = IsMonoid (∙.isMonoid {ℓ} {c ⊔ ℓ}) + module ∪-comm = IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) + module ∙-mon = IsMonoid (∙.isMonoid {ℓ}) module _ where - open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ) (c ⊔ ℓ)) as VE + open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW cong-env : ∀ {n} → (e : Expression n) → ∀ {γ γ′} → γ VE.≋ γ′ → ⟦ e ⟧ γ ≈ ⟦ e ⟧ γ′ @@ -123,10 +103,10 @@ module _ where cong-env (Char x) γ≈γ′ = ≈-refl cong-env (e₁ ∨ e₂) γ≈γ′ = ∪-cong (cong-env e₁ γ≈γ′) (cong-env e₂ γ≈γ′) where - open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ} {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) + open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) cong-env (e₁ ∙ e₂) γ≈γ′ = ∙-cong (cong-env e₁ γ≈γ′) (cong-env e₂ γ≈γ′) where - open IsMonoid (∙.isMonoid {c ⊔ ℓ} {c ⊔ ℓ}) + open IsMonoid (∙.isMonoid {c ⊔ ℓ}) cong-env (Var j) γ≈γ′ = PW.lookup γ≈γ′ j cong-env (μ e) γ≈γ′ = ⋃.⋃-cong (λ x → cong-env e (x PW.∷ γ≈γ′)) @@ -136,16 +116,16 @@ wkn-no-use ε i γ = ≈-refl wkn-no-use (Char x) i γ = ≈-refl wkn-no-use (e₁ ∨ e₂) i γ = ∪-cong (wkn-no-use e₁ i γ) (wkn-no-use e₂ i γ) where - open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ} {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) + open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) wkn-no-use (e₁ ∙ e₂) i γ = ∙-cong (wkn-no-use e₁ i γ) (wkn-no-use e₂ i γ) where - open IsMonoid (∙.isMonoid {c ⊔ ℓ} {c ⊔ ℓ}) + open IsMonoid (∙.isMonoid {c ⊔ ℓ}) wkn-no-use (Var j) i γ = reflexive (begin lookup γ (punchIn i j) ≡˘⟨ ≡.cong (λ x → lookup x (punchIn i j)) (insert-remove γ i) ⟩ lookup (insert (remove γ i) i (lookup γ i)) (punchIn i j) ≡⟨ insert-punchIn (remove γ i) i (lookup γ i) j ⟩ lookup (remove γ i) j ∎) where - open IsEquivalence (≈-isEquivalence {c ⊔ ℓ} {c ⊔ ℓ}) + open IsEquivalence (≈-isEquivalence {c ⊔ ℓ}) open ≡.≡-Reasoning wkn-no-use (μ e) i (z ∷ γ) = ⋃.⋃-cong (λ {x} {y} x≈y → begin ⟦ wkn e (suc i) ⟧ (x ∷ z ∷ γ) ≈⟨ cong-env (wkn e (suc i)) (x≈y ∷ ≋-refl) ⟩ @@ -153,8 +133,8 @@ wkn-no-use (μ e) i (z ∷ γ) = ⋃.⋃-cong (λ {x} {y} x≈y → begin ⟦ e ⟧ (remove (y ∷ z ∷ γ) (suc i)) ≡⟨⟩ ⟦ e ⟧ (y ∷ remove (z ∷ γ) i) ∎) where - open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ) (c ⊔ ℓ)) - open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ) (c ⊔ ℓ)) as VE + open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ)) + open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE subst-fun : ∀ {n} → (e : Expression (suc n)) → ∀ e′ i γ → ⟦ e [ e′ / i ] ⟧ γ ≈ ⟦ e ⟧ (insert γ i (⟦ e′ ⟧ γ)) subst-fun ⊥ e′ i γ = ≈-refl @@ -162,42 +142,42 @@ subst-fun ε e′ i γ = ≈-refl subst-fun (Char x) e′ i γ = ≈-refl subst-fun {n} (e₁ ∨ e₂) e′ i γ = ∪-cong (subst-fun e₁ e′ i γ) (subst-fun e₂ e′ i γ) where - open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ} {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) + open IsCommutativeMonoid (∪.isCommutativeMonoid {c ⊔ ℓ}) renaming (∙-cong to ∪-cong) subst-fun (e₁ ∙ e₂) e′ i γ = ∙-cong (subst-fun e₁ e′ i γ) (subst-fun e₂ e′ i γ) where - open IsMonoid (∙.isMonoid {c ⊔ ℓ} {c ⊔ ℓ}) + open IsMonoid (∙.isMonoid {c ⊔ ℓ}) subst-fun (Var j) e′ i γ with i F.≟ j ... | yes _≡_.refl = sym (reflexive (insert-lookup γ i (⟦ e′ ⟧ γ))) where - open IsEquivalence (≈-isEquivalence {c ⊔ ℓ} {c ⊔ ℓ}) + open IsEquivalence (≈-isEquivalence {c ⊔ ℓ}) ... | no i≢j = reflexive (begin lookup γ (punchOut i≢j) ≡˘⟨ ≡.cong (λ x → lookup x (punchOut i≢j)) (remove-insert γ i (⟦ e′ ⟧ γ)) ⟩ lookup (remove (insert γ i (⟦ e′ ⟧ γ)) i) (punchOut i≢j) ≡⟨ remove-punchOut (insert γ i (⟦ e′ ⟧ γ)) i≢j ⟩ lookup (insert γ i (⟦ e′ ⟧ γ)) j ∎) where open ≡.≡-Reasoning - open IsEquivalence (≈-isEquivalence {c ⊔ ℓ} {c ⊔ ℓ}) + open IsEquivalence (≈-isEquivalence {c ⊔ ℓ}) subst-fun (μ e) e′ i γ = ⋃.⋃-cong λ {x} {y} x≈y → begin ⟦ e [ wkn e′ F.zero / suc i ] ⟧ (x ∷ γ) ≈⟨ cong-env (e [ wkn e′ F.zero / suc i ]) (x≈y ∷ ≋-refl) ⟩ ⟦ e [ wkn e′ F.zero / suc i ] ⟧ (y ∷ γ) ≈⟨ subst-fun e (wkn e′ F.zero) (suc i) (y ∷ γ) ⟩ ⟦ e ⟧ (y ∷ insert γ i (⟦ wkn e′ F.zero ⟧ (y ∷ γ))) ≈⟨ cong-env e (≈-refl ∷ insert′ (wkn-no-use e′ F.zero (y ∷ γ)) ≋-refl i) ⟩ ⟦ e ⟧ (y ∷ insert γ i (⟦ e′ ⟧ γ)) ∎ where - open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ) (c ⊔ ℓ)) - open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ) (c ⊔ ℓ)) as VE + open import Relation.Binary.Reasoning.Setoid (L.setoid (c ⊔ ℓ)) + open import Data.Vec.Relation.Binary.Equality.Setoid (L.setoid (c ⊔ ℓ)) as VE - insert′ : ∀ {n x y} {xs ys : Vec (Language (c ⊔ ℓ) (c ⊔ ℓ)) n} → x ≈ y → xs VE.≋ ys → (i : Fin (suc n)) → insert xs i x VE.≋ insert ys i y + insert′ : ∀ {n x y} {xs ys : Vec (Language (c ⊔ ℓ)) n} → x ≈ y → xs VE.≋ ys → (i : Fin (suc n)) → insert xs i x VE.≋ insert ys i y insert′ x≈y xs≋ys F.zero = x≈y ∷ xs≋ys insert′ x≈y (z≈w ∷ xs≋ys) (suc i) = z≈w ∷ insert′ x≈y xs≋ys i -monotone : ∀ {n} (e : Expression n) → ⟦ e ⟧ Preserves PW.Pointwise L._≤_ ⟶ L._≤_ -monotone ⊥ γ≤γ′ = L.≤-refl -monotone ε γ≤γ′ = L.≤-refl -monotone (Char x) γ≤γ′ = L.≤-refl -monotone (e₁ ∨ e₂) γ≤γ′ = ∪.∪-monotone (monotone e₁ γ≤γ′) (monotone e₂ γ≤γ′) -monotone (e₁ ∙ e₂) γ≤γ′ = ∙.∙-monotone (monotone e₁ γ≤γ′) (monotone e₂ γ≤γ′) -monotone (Var i) γ≤γ′ = PW.lookup γ≤γ′ i -monotone (μ e) γ≤γ′ = ⋃.⋃-monotone (λ x≤y → monotone e (x≤y PW.∷ γ≤γ′)) +mono : ∀ {n} (e : Expression n) → ⟦ e ⟧ Preserves PW.Pointwise L._≤_ ⟶ L._≤_ +mono ⊥ γ≤γ′ = L.≤-refl +mono ε γ≤γ′ = L.≤-refl +mono (Char x) γ≤γ′ = L.≤-refl +mono (e₁ ∨ e₂) γ≤γ′ = ∪.∪-mono (mono e₁ γ≤γ′) (mono e₂ γ≤γ′) +mono (e₁ ∙ e₂) γ≤γ′ = ∙.∙-mono (mono e₁ γ≤γ′) (mono e₂ γ≤γ′) +mono (Var i) γ≤γ′ = PW.lookup γ≤γ′ i +mono (μ e) γ≤γ′ = ⋃.⋃-mono (λ x≤y → mono e (x≤y PW.∷ γ≤γ′)) cast-inverse : ∀ {m n} e → .(m≡n : m ≡ n) → .(n≡m : n ≡ m) → E.cast m≡n (E.cast n≡m e) ≡ e cast-inverse ⊥ m≡n n≡m = ≡.refl diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 4623066..754d92d 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -28,10 +28,10 @@ data _,_⊢_∶_ : {m : ℕ} → {n : ℕ} → Vec (Type ℓ ℓ) m → Vec (Typ Vee : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e₁ e₂ τ₁ τ₂} → Γ , Δ ⊢ e₁ ∶ τ₁ → Γ , Δ ⊢ e₂ ∶ τ₂ → (τ₁#τ₂ : τ₁ # τ₂) → Γ , Δ ⊢ e₁ ∨ e₂ ∶ τ₁ ∨ₜ τ₂ vcast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec A n +vcast {n = ℕ.zero} eq [] = [] vcast {n = suc n} eq (x ∷ xs) = x ∷ vcast (suc-injective eq) xs where open import Data.Nat.Properties using (suc-injective) -vcast {n = ℕ.zero} eq [] = [] data _≅_ {a A} : {m n : ℕ} → Vec {a} A m → Vec A n → Set a where []≅[] : [] ≅ [] diff --git a/src/Cfe/Judgement/Properties.agda b/src/Cfe/Judgement/Properties.agda index 101994b..1c06fcd 100644 --- a/src/Cfe/Judgement/Properties.agda +++ b/src/Cfe/Judgement/Properties.agda @@ -13,11 +13,65 @@ open import Data.Empty open import Data.Fin as F hiding (cast) open import Data.Fin.Properties open import Data.Nat as ℕ -open import Data.Nat.Properties +open import Data.Nat.Properties as NP open import Data.Vec open import Data.Vec.Properties open import Function open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +private + raise-mono : ∀ {m n i j} → i F.≤ j → raise {n} m i F.≤ raise m j + raise-mono {zero} i≤j = i≤j + raise-mono {suc m} i≤j = s≤s (raise-mono i≤j) + + raise≤ : ∀ {m} n i → n ℕ.≤ toℕ (raise {m} n i) + raise≤ zero i = z≤n + raise≤ (suc n) i = s≤s (raise≤ n i) + + inject+≤raise : ∀ {m n} i j → inject+ {suc n} m i F.≤ F.cast (+-suc n m) (raise {suc m} n j) + inject+≤raise {m} {n} i j = begin + toℕ (inject+ m i) ≡˘⟨ toℕ-inject+ m i ⟩ + toℕ i ≤⟨ NP.<⇒≤pred (toℕ<n i) ⟩ + n ≤⟨ m≤m+n n (toℕ j) ⟩ + n ℕ.+ toℕ j ≡˘⟨ toℕ-raise n j ⟩ + toℕ (raise n j) ≡˘⟨ toℕ-cast (+-suc n m) (raise n j) ⟩ + toℕ (F.cast _ (raise n j)) ∎ + where + open ≤-Reasoning + + toℕ-punchIn : ∀ {m} i j → toℕ j ℕ.≤ toℕ (punchIn {m} i j) + toℕ-punchIn zero j = n≤1+n (toℕ j) + toℕ-punchIn (suc i) zero = z≤n + toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j) + + toℕ-punchOut : ∀ {m i j} → (i≢j : i ≢ j) → toℕ j ℕ.≤ suc (toℕ (punchOut {m} i≢j)) + toℕ-punchOut {_} {zero} {zero} i≢j = ⊥-elim (i≢j refl) + toℕ-punchOut {_} {zero} {suc j} i≢j = NP.≤-refl + toℕ-punchOut {suc m} {suc i} {zero} i≢j = z≤n + toℕ-punchOut {suc m} {suc i} {suc j} i≢j = s≤s (toℕ-punchOut (i≢j ∘ cong suc)) + + toℕ-reduce : ∀ {m n} i i≥m → toℕ (reduce≥ {m} {n} i i≥m) ≡ toℕ i ∸ m + toℕ-reduce {zero} i i≥m = refl + toℕ-reduce {suc m} (suc i) (s≤s i≥m) = toℕ-reduce i i≥m + + <⇒punchOut≤ : ∀ {m n i j} → n ℕ.< toℕ j → (i≢j : i ≢ j) → n ℕ.≤ toℕ (punchOut {m} i≢j) + <⇒punchOut≤ {m} {n} {zero} {suc j} (s≤s n<j) i≢j = n<j + <⇒punchOut≤ {suc m} {zero} {suc i} {suc j} (s≤s n<j) i≢j = z≤n + <⇒punchOut≤ {suc m} {suc n} {suc i} {suc j} (s≤s n<j) i≢j = s≤s (<⇒punchOut≤ n<j (i≢j ∘ cong suc)) + + punchIn-∸ : ∀ {m n} i {j} j≥n → toℕ (punchIn (F.cast (+-suc n m) (raise n i)) j) ∸ n ≡ toℕ (punchIn i (reduce≥ j j≥n)) + punchIn-∸ {zero} {n} zero {j} j≥n = ⊥-elim (<⇒≱ (begin-strict + toℕ j ≡˘⟨ toℕ-cast (+-identityʳ n) j ⟩ + toℕ (F.cast _ j) <⟨ toℕ<n (F.cast _ j) ⟩ + n ∎) j≥n) + where + open ≤-Reasoning + punchIn-∸ {suc m} {zero} zero {j} z≤n = refl + punchIn-∸ {suc m} {suc n} zero {suc j} (s≤s j≥n) = punchIn-∸ zero j≥n + punchIn-∸ {suc m} {zero} (suc i) {zero} z≤n = refl + punchIn-∸ {suc m} {zero} (suc i) {suc j} z≤n = cong suc (punchIn-∸ i z≤n) + punchIn-∸ {suc m} {suc n} (suc i) {suc j} (s≤s j≥n) = punchIn-∸ (suc i) j≥n ≅-refl : ∀ {a A m} {xs : Vec {a} A m} → xs ≅ xs ≅-refl {xs = []} = []≅[] @@ -30,6 +84,10 @@ open import Relation.Binary.PropositionalEquality ≅-length []≅[] = refl ≅-length (_ ∷ xs≅ys) = cong suc (≅-length xs≅ys) +≅-vcast : ∀ {a A m n} {xs : Vec {a} A m} → .(m≡n : m ≡ n) → vcast m≡n xs ≅ xs +≅-vcast {n = zero} {[]} m≡n = []≅[] +≅-vcast {n = suc n} {x ∷ xs} m≡n = refl ∷ ≅-vcast (NP.suc-injective m≡n) + ≅⇒≡ : ∀ {a A m n} {xs : Vec {a} A m} {ys : Vec _ n} → (xs≅ys : xs ≅ ys) → vcast (≅-length xs≅ys) xs ≡ ys ≅⇒≡ []≅[] = refl ≅⇒≡ (x≡y ∷ xs≅ys) = cong₂ _∷_ x≡y (≅⇒≡ xs≅ys) @@ -69,7 +127,7 @@ cast₁ eq (Fix Γ₁,τ∷Δ⊢e∶τ) = Fix (cast₁ eq Γ₁,τ∷Δ⊢e∶τ cast₁ {Δ = Δ} eq (Cat Γ₁,Δ⊢e₁∶τ₁ Δ++Γ₁,∙⊢e₂∶τ₂ τ₁⊛τ₂) = Cat (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ (++ˡ Δ eq) Δ++Γ₁,∙⊢e₂∶τ₂) τ₁⊛τ₂ cast₁ eq (Vee Γ₁,Δ⊢e₁∶τ₁ Γ₁,Δ⊢e₂∶τ₂ τ₁#τ₂) = Vee (cast₁ eq Γ₁,Δ⊢e₁∶τ₁) (cast₁ eq Γ₁,Δ⊢e₂∶τ₂) τ₁#τ₂ -wkn₁ : ∀ {m n} {Γ : Vec (Type ℓ ℓ) m} {Δ : Vec (Type ℓ ℓ) n} {e τ} → +wkn₁ : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e τ} → Γ , Δ ⊢ e ∶ τ → ∀ τ′ i → insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (wkn e (F.cast (+-suc n m) (raise n i))) ∶ τ @@ -78,16 +136,11 @@ wkn₁ (Char c) τ′ i = Char c wkn₁ Bot τ′ i = Bot wkn₁ {m} {n} {Γ} {Δ} {e} {τ} (Var {i = j} j≥n) τ′ i = subst (insert Γ i τ′ , Δ ⊢ cast (sym (+-suc n m)) (Var (punchIn (F.cast (+-suc n m) (raise n i)) j)) ∶_) - (eq Γ τ′ i j≥n) - (Var (le i j≥n)) + eq + (Var le) where - toℕ-punchIn : ∀ {m} i j → toℕ j ℕ.≤ toℕ (punchIn {m} i j) - toℕ-punchIn zero j = n≤1+n (toℕ j) - toℕ-punchIn (suc i) zero = z≤n - toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j) - - le : ∀ {m n} i {j} → toℕ j ≥ n → toℕ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) ≥ n - le {m} {n} i {j} j≥n = begin + le : toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ≥ n + le = begin n ≤⟨ j≥n ⟩ toℕ j ≤⟨ toℕ-punchIn (F.cast (+-suc n m) (raise n i)) j ⟩ toℕ (punchIn (F.cast _ (raise n i)) j) ≡˘⟨ toℕ-cast (sym (+-suc n m)) (punchIn (F.cast _ (raise n i)) j) ⟩ @@ -99,35 +152,18 @@ wkn₁ {m} {n} {Γ} {Δ} {e} {τ} (Var {i = j} j≥n) τ′ i = lookup-cast l zero = refl lookup-cast (x ∷ l) (suc j) = lookup-cast l j - toℕ-reduce : ∀ {m n} i i≥m → toℕ (reduce≥ {m} {n} i i≥m) ≡ toℕ i ∸ m - toℕ-reduce {zero} i i≥m = refl - toℕ-reduce {suc m} (suc i) (s≤s i≥m) = toℕ-reduce i i≥m - - punchIn-∸ : ∀ {m n} i {j} j≥n → toℕ (punchIn (F.cast (+-suc n m) (raise n i)) j) ∸ n ≡ toℕ (punchIn i (reduce≥ j j≥n)) - punchIn-∸ {zero} {n} zero {j} j≥n = ⊥-elim (<⇒≱ (begin-strict - toℕ j ≡˘⟨ toℕ-cast (+-identityʳ n) j ⟩ - toℕ (F.cast _ j) <⟨ toℕ<n (F.cast _ j) ⟩ - n ∎) j≥n) - where - open ≤-Reasoning - punchIn-∸ {suc m} {zero} zero {j} z≤n = refl - punchIn-∸ {suc m} {suc n} zero {suc j} (s≤s j≥n) = punchIn-∸ zero j≥n - punchIn-∸ {suc m} {zero} (suc i) {zero} z≤n = refl - punchIn-∸ {suc m} {zero} (suc i) {suc j} z≤n = cong suc (punchIn-∸ i z≤n) - punchIn-∸ {suc m} {suc n} (suc i) {suc j} (s≤s j≥n) = punchIn-∸ (suc i) j≥n - - missing-link : ∀ {m n} i {j} j≥n → reduce≥ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) (le i j≥n) ≡ punchIn i (reduce≥ j j≥n) - missing-link {n = n} i {j} j≥n = toℕ-injective (begin - toℕ (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n)) ≡⟨ toℕ-reduce (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n) ⟩ + missing-link : reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le ≡ punchIn i (reduce≥ j j≥n) + missing-link = toℕ-injective (begin + toℕ (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡⟨ toℕ-reduce (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le ⟩ toℕ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) ∸ n ≡⟨ cong (_∸ n) (toℕ-cast _ (punchIn (F.cast _ (raise n i)) j)) ⟩ toℕ (punchIn (F.cast _ (raise n i)) j) ∸ n ≡⟨ punchIn-∸ i j≥n ⟩ toℕ (punchIn i (reduce≥ j j≥n)) ∎) where open ≡-Reasoning - eq : ∀ {a} {A : Set a} {m n} (Γ : Vec A m) τ′ i {j} j≥n → lookup (insert Γ i τ′) (reduce≥ (F.cast (sym (+-suc n m)) (punchIn (F.cast (+-suc n m) (raise n i)) j)) (le i {j} j≥n)) ≡ lookup Γ (reduce≥ j j≥n) - eq {n = n} Γ τ′ i {j} j≥n = begin - lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) (le i j≥n)) ≡⟨ cong (lookup (insert Γ i τ′)) (missing-link i j≥n) ⟩ + eq : lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡ lookup Γ (reduce≥ j j≥n) + eq = begin + lookup (insert Γ i τ′) (reduce≥ (F.cast _ (punchIn (F.cast _ (raise n i)) j)) le) ≡⟨ cong (lookup (insert Γ i τ′)) missing-link ⟩ lookup (insert Γ i τ′) (punchIn i (reduce≥ j j≥n)) ≡⟨ insert-punchIn Γ i τ′ (reduce≥ j j≥n) ⟩ lookup Γ (reduce≥ j j≥n) ∎ where @@ -157,10 +193,9 @@ wkn₁{m} {n} {Γ} {Δ} (Cat {e₂ = e₂} {τ₂ = τ₂} Γ,Δ⊢e₁∶τ₁ toℕ (F.cast k≡m i) ≡⟨ toℕ-cast k≡m i ⟩ toℕ i ≡˘⟨ toℕ-cast k≡n i ⟩ toℕ (F.cast k≡n i) ∎) - wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) τ′ i = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ τ′ i) (wkn₁ Γ,Δ⊢e₂∶τ₂ τ′ i) τ₁#τ₂ -wkn₂ : ∀ {m n} {Γ : Vec (Type ℓ ℓ) m} {Δ : Vec (Type ℓ ℓ) n} {e τ} → +wkn₂ : ∀ {m n} {Γ : Vec _ m} {Δ : Vec _ n} {e τ} → Γ , Δ ⊢ e ∶ τ → ∀ τ′ i → Γ , insert Δ i τ′ ⊢ wkn e (inject+ m i) ∶ τ @@ -177,13 +212,10 @@ wkn₂ {m} {n} {Γ} {Δ} (Var {i = j} j≥n) τ′ i = where open ≤-Reasoning - m<n+1⇒m≤n : ∀ {m n} → m ℕ.< suc n → m ℕ.≤ n - m<n+1⇒m≤n (s≤s m≤n) = m≤n - i≤j : toℕ (inject+ m i) ℕ.≤ toℕ j i≤j = begin toℕ (inject+ m i) ≡˘⟨ toℕ-inject+ m i ⟩ - toℕ i ≤⟨ m<n+1⇒m≤n (toℕ<n i) ⟩ + toℕ i ≤⟨ NP.<⇒≤pred (toℕ<n i) ⟩ n ≤⟨ j≥n ⟩ toℕ j ∎ diff --git a/src/Cfe/Language/Base.agda b/src/Cfe/Language/Base.agda index 74854df..bda9000 100644 --- a/src/Cfe/Language/Base.agda +++ b/src/Cfe/Language/Base.agda @@ -1,6 +1,6 @@ {-# OPTIONS --without-K --safe #-} -open import Relation.Binary as B using (Setoid) +open import Relation.Binary module Cfe.Language.Base {c ℓ} (over : Setoid c ℓ) @@ -11,96 +11,61 @@ open Setoid over using () renaming (Carrier to C) open import Algebra open import Data.Empty open import Data.List hiding (null) +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product open import Data.Unit using (⊤; tt) -open import Function hiding (Injection; Surjection; Inverse) -import Function.Equality as Equality using (setoid) +open import Function hiding (_⟶_) open import Level as L hiding (Lift) -open import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial as Trivial -open import Relation.Binary.PropositionalEquality as ≡ using (_≡_) -open import Relation.Binary.Indexed.Heterogeneous +open import Relation.Binary.PropositionalEquality infix 4 _∈_ infix 4 _∉_ -Language : ∀ a aℓ → Set (suc c ⊔ suc a ⊔ suc aℓ) -Language a aℓ = IndexedSetoid (List C) a aℓ +record Language a : Set (c ⊔ ℓ ⊔ suc a) where + field + 𝕃 : List C → Set a + ∈-resp-≋ : 𝕃 ⟶ 𝕃 Respects _≋_ -∅ : Language 0ℓ 0ℓ -∅ = Trivial.indexedSetoid (≡.setoid ⊥) +∅ : Language 0ℓ +∅ = record + { 𝕃 = const ⊥ + ; ∈-resp-≋ = λ _ () + } -{ε} : Language c 0ℓ +{ε} : Language c {ε} = record - { Carrier = [] ≡_ - ; _≈_ = λ _ _ → ⊤ - ; isEquivalence = record - { refl = tt - ; sym = λ _ → tt - ; trans = λ _ _ → tt - } + { 𝕃 = [] ≡_ + ; ∈-resp-≋ = λ { [] refl → refl} } -Lift : ∀ {a aℓ} → (b bℓ : Level) → Language a aℓ → Language (a ⊔ b) (aℓ ⊔ bℓ) -Lift b bℓ A = record - { Carrier = L.Lift b ∘ A.Carrier - ; _≈_ = λ (lift x) (lift y) → L.Lift bℓ (x A.≈ y) - ; isEquivalence = record - { refl = lift A.refl - ; sym = λ (lift x) → lift (A.sym x) - ; trans = λ (lift x) (lift y) → lift (A.trans x y) - } +Lift : ∀ {a} → (b : Level) → Language a → Language (a ⊔ b) +Lift b A = record + { 𝕃 = L.Lift b ∘ A.𝕃 + ; ∈-resp-≋ = λ { eq (lift l∈A) → lift (A.∈-resp-≋ eq l∈A)} } where - module A = IndexedSetoid A - -𝕃 : ∀ {a aℓ} → Language a aℓ → List C → Set a -𝕃 = IndexedSetoid.Carrier + module A = Language A -_∈_ : ∀ {a aℓ} → List C → Language a aℓ → Set a -_∈_ = flip 𝕃 +_∈_ : ∀ {a} → List C → Language a → Set a +_∈_ = flip Language.𝕃 -_∉_ : ∀ {a aℓ} → List C → Language a aℓ → Set a +_∉_ : ∀ {a} → List C → Language a → Set a l ∉ A = l ∈ A → ⊥ -∈-cong : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂} → l₁ ≡ l₂ → l₁ ∈ A → l₂ ∈ A -∈-cong A ≡.refl l∈A = l∈A - -≈ᴸ : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂} → 𝕃 A l₁ → 𝕃 A l₂ → Set aℓ -≈ᴸ = IndexedSetoid._≈_ - -≈ᴸ-refl : ∀ {a aℓ} → (A : Language a aℓ) → Reflexive (𝕃 A) (≈ᴸ A) -≈ᴸ-refl = IsIndexedEquivalence.refl ∘ IndexedSetoid.isEquivalence - -≈ᴸ-sym : ∀ {a aℓ} → (A : Language a aℓ) → Symmetric (𝕃 A) (≈ᴸ A) -≈ᴸ-sym = IsIndexedEquivalence.sym ∘ IndexedSetoid.isEquivalence - -≈ᴸ-trans : ∀ {a aℓ} → (A : Language a aℓ) → Transitive (𝕃 A) (≈ᴸ A) -≈ᴸ-trans = IsIndexedEquivalence.trans ∘ IndexedSetoid.isEquivalence - -≈ᴸ-cong : ∀ {a aℓ} → (A : Language a aℓ) → ∀ {l₁ l₂ l₃ l₄} → - (l₁≡l₂ : l₁ ≡ l₂) → (l₃≡l₄ : l₃ ≡ l₄) → - (l₁∈A : l₁ ∈ A) → (l₃∈A : l₃ ∈ A) → - ≈ᴸ A l₁∈A l₃∈A → - ≈ᴸ A (∈-cong A l₁≡l₂ l₁∈A) (∈-cong A l₃≡l₄ l₃∈A) -≈ᴸ-cong A ≡.refl ≡.refl l₁∈A l₃∈A eq = eq - -record _≤_ {a aℓ b bℓ} (A : Language a aℓ) (B : Language b bℓ) : Set (c ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) where +record _≤_ {a b} (A : Language a) (B : Language b) : Set (c ⊔ a ⊔ b) where field f : ∀ {l} → l ∈ A → l ∈ B - cong : ∀ {l₁ l₂ l₁∈A l₂∈A} → ≈ᴸ A {l₁} {l₂} l₁∈A l₂∈A → ≈ᴸ B (f l₁∈A) (f l₂∈A) -record _≈_ {a aℓ b bℓ} (A : Language a aℓ) (B : Language b bℓ) : Set (c ⊔ ℓ ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) where +record _≈_ {a b} (A : Language a) (B : Language b) : Set (c ⊔ ℓ ⊔ a ⊔ b) where field f : ∀ {l} → l ∈ A → l ∈ B f⁻¹ : ∀ {l} → l ∈ B → l ∈ A - cong₁ : ∀ {l₁ l₂ l₁∈A l₂∈A} → ≈ᴸ A {l₁} {l₂} l₁∈A l₂∈A → ≈ᴸ B (f l₁∈A) (f l₂∈A) - cong₂ : ∀ {l₁ l₂ l₁∈B l₂∈B} → ≈ᴸ B {l₁} {l₂} l₁∈B l₂∈B → ≈ᴸ A (f⁻¹ l₁∈B) (f⁻¹ l₂∈B) -null : ∀ {a} {aℓ} → Language a aℓ → Set a +null : ∀ {a} → Language a → Set a null A = [] ∈ A -first : ∀ {a} {aℓ} → Language a aℓ → C → Set (c ⊔ a) +first : ∀ {a} → Language a → C → Set (c ⊔ a) first A x = ∃[ l ] x ∷ l ∈ A -flast : ∀ {a} {aℓ} → Language a aℓ → C → Set (c ⊔ a) -flast A x = ∃[ l ] (l ≡.≢ [] × ∃[ l′ ] l ++ x ∷ l′ ∈ A) +flast : ∀ {a} → Language a → C → Set (c ⊔ a) +flast A x = ∃[ l ] (l ≢ [] × ∃[ l′ ] l ++ x ∷ l′ ∈ A) diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda index 62acf8f..ef45432 100644 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -10,6 +10,7 @@ open import Algebra open import Cfe.Language over as 𝕃 open import Data.Empty open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.List.Properties open import Data.Product as Product open import Function @@ -20,108 +21,65 @@ import Relation.Binary.Indexed.Heterogeneous as I open Setoid over using () renaming (Carrier to C) module _ - {a aℓ b bℓ} - (A : Language a aℓ) - (B : Language b bℓ) + {a b} + (A : Language a) + (B : Language b) where - infix 4 _≈ᶜ_ - infix 4 _∙_ + module A = Language A + module B = Language B - Concat : List C → Set (c ⊔ a ⊔ b) - Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≡ l + infix 4 _∙_ - _≈ᶜ_ : {l₁ l₂ : List C} → REL (Concat l₁) (Concat l₂) (aℓ ⊔ bℓ) - (_ , l₁∈A , _ , l₂∈B , _) ≈ᶜ (_ , l₁′∈A , _ , l₂′∈B , _) = (≈ᴸ A l₁∈A l₁′∈A) × (≈ᴸ B l₂∈B l₂′∈B) + Concat : List C → Set (c ⊔ ℓ ⊔ a ⊔ b) + Concat l = ∃[ l₁ ] l₁ ∈ A × ∃[ l₂ ] l₂ ∈ B × l₁ ++ l₂ ≋ l - _∙_ : Language (c ⊔ a ⊔ b) (aℓ ⊔ bℓ) + _∙_ : Language (c ⊔ ℓ ⊔ a ⊔ b) _∙_ = record - { Carrier = Concat - ; _≈_ = _≈ᶜ_ - ; isEquivalence = record - { refl = ≈ᴸ-refl A , ≈ᴸ-refl B - ; sym = Product.map (≈ᴸ-sym A) (≈ᴸ-sym B) - ; trans = Product.zip (≈ᴸ-trans A) (≈ᴸ-trans B) + { 𝕃 = Concat + ; ∈-resp-≋ = λ { l≋l′ (_ , l₁∈A , _ , l₂∈B , eq) → -, l₁∈A , -, l₂∈B , ≋-trans eq l≋l′ } } -isMonoid : ∀ {a aℓ} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) aℓ {ε}) +isMonoid : ∀ {a} → IsMonoid 𝕃._≈_ _∙_ (𝕃.Lift (ℓ ⊔ a) {ε}) isMonoid {a} = record { isSemigroup = record { isMagma = record { isEquivalence = ≈-isEquivalence ; ∙-cong = λ X≈Y U≈V → record - { f = λ { (l₁ , l₁∈X , l₂ , l₂∈U , l₁++l₂≡l) → l₁ , _≈_.f X≈Y l₁∈X , l₂ , _≈_.f U≈V l₂∈U , l₁++l₂≡l} - ; f⁻¹ = λ { (l₁ , l₁∈Y , l₂ , l₂∈V , l₁++l₂≡l) → l₁ , _≈_.f⁻¹ X≈Y l₁∈Y , l₂ , _≈_.f⁻¹ U≈V l₂∈V , l₁++l₂≡l} - ; cong₁ = λ { (x , y) → _≈_.cong₁ X≈Y x , _≈_.cong₁ U≈V y} - ; cong₂ = λ { (x , y) → _≈_.cong₂ X≈Y x , _≈_.cong₂ U≈V y} + { f = λ { (_ , l₁∈X , _ , l₂∈U , eq) → -, _≈_.f X≈Y l₁∈X , -, _≈_.f U≈V l₂∈U , eq } + ; f⁻¹ = λ { (_ , l₁∈Y , _ , l₂∈V , eq) → -, _≈_.f⁻¹ X≈Y l₁∈Y , -, _≈_.f⁻¹ U≈V l₂∈V , eq } } } ; assoc = λ X Y Z → record - { f = λ {l} → (λ { (l₁ , (l₁′ , l₁′∈X , l₂′ , l₂′∈Y , l₁′++l₂′≡l₁) , l₂ , l₂∈Z , l₁++l₂≡l) → - l₁′ , l₁′∈X , l₂′ ++ l₂ , (l₂′ , l₂′∈Y , l₂ , l₂∈Z , refl) , (begin - l₁′ ++ l₂′ ++ l₂ ≡˘⟨ ++-assoc l₁′ l₂′ l₂ ⟩ - (l₁′ ++ l₂′) ++ l₂ ≡⟨ cong (_++ l₂) l₁′++l₂′≡l₁ ⟩ - l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩ - l ∎)}) - ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂ , (l₁′ , l₁′∈Y , l₂′ , l₂′∈Z , l₁′++l₂′≡l₂), l₁++l₂≡l) → - l₁ ++ l₁′ , ( l₁ , l₁∈X , l₁′ , l₁′∈Y , refl) , l₂′ , l₂′∈Z , (begin - (l₁ ++ l₁′) ++ l₂′ ≡⟨ ++-assoc l₁ l₁′ l₂′ ⟩ - l₁ ++ (l₁′ ++ l₂′) ≡⟨ cong (l₁ ++_) l₁′++l₂′≡l₂ ⟩ - l₁ ++ l₂ ≡⟨ l₁++l₂≡l ⟩ - l ∎)} - ; cong₁ = Product.assocʳ - ; cong₂ = Product.assocˡ + { f = λ {l} → λ { (l₁₂ , (l₁ , l₁∈X , l₂ , l₂∈Y , eq₁) , l₃ , l₃∈Z , eq₂) → + -, l₁∈X , -, (-, l₂∈Y , -, l₃∈Z , ≋-refl) , (begin + l₁ ++ l₂ ++ l₃ ≡˘⟨ ++-assoc l₁ l₂ l₃ ⟩ + (l₁ ++ l₂) ++ l₃ ≈⟨ ++⁺ eq₁ ≋-refl ⟩ + l₁₂ ++ l₃ ≈⟨ eq₂ ⟩ + l ∎) } + ; f⁻¹ = λ {l} → λ { (l₁ , l₁∈X , l₂₃ , (l₂ , l₂∈Y , l₃ , l₃∈Z , eq₁) , eq₂) → + -, (-, l₁∈X , -, l₂∈Y , ≋-refl) , -, l₃∈Z , (begin + (l₁ ++ l₂) ++ l₃ ≡⟨ ++-assoc l₁ l₂ l₃ ⟩ + l₁ ++ l₂ ++ l₃ ≈⟨ ++⁺ ≋-refl eq₁ ⟩ + l₁ ++ l₂₃ ≈⟨ eq₂ ⟩ + l ∎) } } } - ; identity = (λ A → record - { f = idˡ {a} A - ; f⁻¹ = λ {l} l∈A → [] , lift refl , l , l∈A , refl - ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idˡ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A} - ; cong₂ = λ l₁≈l₂ → lift _ , l₁≈l₂ - }) , (λ A → record - { f = idʳ {a} A - ; f⁻¹ = λ {l} l∈A → l , l∈A , [] , lift refl , ++-identityʳ l - ; cong₁ = λ {l₁} {l₂} {l₁∈A} {l₂∈A} → idʳ-cong {a} A {l₁} {l₂} {l₁∈A} {l₂∈A} - ; cong₂ = λ l₁≈l₂ → l₁≈l₂ , lift _ + ; identity = (λ X → record + { f = λ { ([] , _ , _ , l₂∈X , eq) → Language.∈-resp-≋ X eq l₂∈X } + ; f⁻¹ = λ l∈X → -, lift refl , -, l∈X , ≋-refl + }) , (λ X → record + { f = λ { (l₁ , l₁∈X , [] , _ , eq) → Language.∈-resp-≋ X (≋-trans (≋-reflexive (sym (++-identityʳ l₁))) eq) l₁∈X } + ; f⁻¹ = λ {l} l∈X → -, l∈X , -, lift refl , ≋-reflexive (++-identityʳ l) }) } where - open ≡.≡-Reasoning - - idˡ : ∀ {a aℓ} → - (A : Language (c ⊔ ℓ ⊔ a) aℓ) → - ∀ {l} → - l ∈ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) → - l ∈ A - idˡ _ ([] , _ , l , l∈A , refl) = l∈A - - idˡ-cong : ∀ {a aℓ} → - (A : Language (c ⊔ ℓ ⊔ a) aℓ) → - ∀ {l₁ l₂ l₁∈A l₂∈A} → - ≈ᴸ ((𝕃.Lift (ℓ ⊔ a) aℓ {ε}) ∙ A) {l₁} {l₂} l₁∈A l₂∈A → - ≈ᴸ A (idˡ {a} A l₁∈A) (idˡ {a} A l₂∈A) - idˡ-cong _ {l₁∈A = [] , _ , l₁ , l₁∈A , refl} {[] , _ , l₂ , l₂∈A , refl} (_ , l₁≈l₂) = l₁≈l₂ - - idʳ : ∀ {a aℓ} → - (A : Language (c ⊔ ℓ ⊔ a) aℓ) → - ∀ {l} → - l ∈ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) → - l ∈ A - idʳ A (l , l∈A , [] , _ , refl) = ∈-cong A (sym (++-identityʳ l)) l∈A - - idʳ-cong : ∀ {a aℓ} → - (A : Language (c ⊔ ℓ ⊔ a) aℓ) → - ∀ {l₁ l₂ l₁∈A l₂∈A} → - ≈ᴸ (A ∙ (𝕃.Lift (ℓ ⊔ a) aℓ {ε})) {l₁} {l₂} l₁∈A l₂∈A → - ≈ᴸ A (idʳ {a} A l₁∈A) (idʳ {a} A l₂∈A) - idʳ-cong A {l₁∈A = l₁ , l₁∈A , [] , _ , refl} {l₂ , l₂∈A , [] , _ , refl} (l₁≈l₂ , _) = - ≈ᴸ-cong A (sym (++-identityʳ l₁)) (sym (++-identityʳ l₂)) l₁∈A l₂∈A l₁≈l₂ + open import Relation.Binary.Reasoning.Setoid ≋-setoid -∙-monotone : ∀ {a aℓ b bℓ} → _∙_ Preserves₂ _≤_ {a} {aℓ} ⟶ _≤_ {b} {bℓ} ⟶ _≤_ -∙-monotone X≤Y U≤V = record - { f = λ {(_ , l₁∈X , _ , l₂∈U , l₁++l₂≡l) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , l₁++l₂≡l} - ; cong = Product.map X≤Y.cong U≤V.cong +∙-mono : ∀ {a b} → _∙_ Preserves₂ _≤_ {a} ⟶ _≤_ {b} ⟶ _≤_ +∙-mono X≤Y U≤V = record + { f = λ {(_ , l₁∈X , _ , l₂∈U , eq) → -, X≤Y.f l₁∈X , -, U≤V.f l₂∈U , eq} } where module X≤Y = _≤_ X≤Y diff --git a/src/Cfe/Language/Construct/Single.agda b/src/Cfe/Language/Construct/Single.agda index b06be3d..ddea1a6 100644 --- a/src/Cfe/Language/Construct/Single.agda +++ b/src/Cfe/Language/Construct/Single.agda @@ -12,17 +12,16 @@ open Setoid over renaming (Carrier to C) open import Cfe.Language over hiding (_≈_) open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product as Product open import Data.Unit open import Level -{_} : C → Language (c ⊔ ℓ) 0ℓ +{_} : C → Language (c ⊔ ℓ) { c } = record - { Carrier = λ l → ∃[ a ] (l ≡.≡ [ a ] × a ≈ c) - ; _≈_ = λ _ _ → ⊤ - ; isEquivalence = record - { refl = tt - ; sym = λ _ → tt - ; trans = λ _ _ → tt - } + { 𝕃 = [ c ] ≋_ + ; ∈-resp-≋ = λ l₁≋l₂ l₁∈{c} → ≋-trans l₁∈{c} l₁≋l₂ } + +xy∉{c} : ∀ c x y l → x ∷ y ∷ l ∉ { c } +xy∉{c} c x y l (_ ∷ ()) diff --git a/src/Cfe/Language/Construct/Union.agda b/src/Cfe/Language/Construct/Union.agda index 5099d04..5e86124 100644 --- a/src/Cfe/Language/Construct/Union.agda +++ b/src/Cfe/Language/Construct/Union.agda @@ -19,33 +19,26 @@ open import Cfe.Language over as 𝕃 hiding (Lift) open Setoid over renaming (Carrier to C) module _ - {a aℓ b bℓ} - (A : Language a aℓ) - (B : Language b bℓ) + {a b} + (A : Language a) + (B : Language b) where - infix 4 _≈ᵁ_ + module A = Language A + module B = Language B + infix 6 _∪_ Union : List C → Set (a ⊔ b) Union l = l ∈ A ⊎ l ∈ B - data _≈ᵁ_ : {l₁ l₂ : List C} → REL (Union l₁) (Union l₂) (c ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) where - A≈A : ∀ {l₁ l₂ x y} → ≈ᴸ A {l₁} {l₂} x y → (inj₁ x) ≈ᵁ (inj₁ y) - B≈B : ∀ {l₁ l₂ x y} → ≈ᴸ B {l₁} {l₂} x y → (inj₂ x) ≈ᵁ (inj₂ y) - - _∪_ : Language (a ⊔ b) (c ⊔ a ⊔ aℓ ⊔ b ⊔ bℓ) + _∪_ : Language (a ⊔ b) _∪_ = record - { Carrier = Union - ; _≈_ = _≈ᵁ_ - ; isEquivalence = record - { refl = λ {_} {x} → case x return (λ x → x ≈ᵁ x) of λ { (inj₁ x) → A≈A (≈ᴸ-refl A) ; (inj₂ y) → B≈B (≈ᴸ-refl B)} - ; sym = λ { (A≈A x) → A≈A (≈ᴸ-sym A x) ; (B≈B x) → B≈B (≈ᴸ-sym B x)} - ; trans = λ { (A≈A x) (A≈A y) → A≈A (≈ᴸ-trans A x y) ; (B≈B x) (B≈B y) → B≈B (≈ᴸ-trans B x y) } - } + { 𝕃 = Union + ; ∈-resp-≋ = λ l₁≋l₂ → Sum.map (A.∈-resp-≋ l₁≋l₂) (B.∈-resp-≋ l₁≋l₂) } -isCommutativeMonoid : ∀ {a aℓ} → IsCommutativeMonoid 𝕃._≈_ _∪_ (𝕃.Lift a (c ⊔ a ⊔ aℓ) ∅) +isCommutativeMonoid : ∀ {a} → IsCommutativeMonoid 𝕃._≈_ _∪_ (𝕃.Lift a ∅) isCommutativeMonoid = record { isMonoid = record { isSemigroup = record @@ -54,47 +47,36 @@ isCommutativeMonoid = record ; ∙-cong = λ X≈Y U≈V → record { f = Sum.map (_≈_.f X≈Y) (_≈_.f U≈V) ; f⁻¹ = Sum.map (_≈_.f⁻¹ X≈Y) (_≈_.f⁻¹ U≈V) - ; cong₁ = λ { (A≈A x) → A≈A (_≈_.cong₁ X≈Y x) ; (B≈B x) → B≈B (_≈_.cong₁ U≈V x) } - ; cong₂ = λ { (A≈A x) → A≈A (_≈_.cong₂ X≈Y x) ; (B≈B x) → B≈B (_≈_.cong₂ U≈V x) } } } ; assoc = λ A B C → record { f = Sum.assocʳ ; f⁻¹ = Sum.assocˡ - ; cong₁ = λ { (A≈A (A≈A x)) → A≈A x ; (A≈A (B≈B x)) → B≈B (A≈A x) ; (B≈B x) → B≈B (B≈B x) } - ; cong₂ = λ { (A≈A x) → A≈A (A≈A x) ; (B≈B (A≈A x)) → A≈A (B≈B x) ; (B≈B (B≈B x)) → B≈B x } } } ; identity = (λ A → record { f = λ { (inj₂ x) → x } ; f⁻¹ = inj₂ - ; cong₁ = λ { (B≈B x) → x } - ; cong₂ = B≈B }) , (λ A → record { f = λ { (inj₁ x) → x } ; f⁻¹ = inj₁ - ; cong₁ = λ { (A≈A x) → x } - ; cong₂ = A≈A }) } ; comm = λ A B → record { f = Sum.swap ; f⁻¹ = Sum.swap - ; cong₁ = λ { (A≈A x) → B≈B x ; (B≈B x) → A≈A x } - ; cong₂ = λ { (A≈A x) → B≈B x ; (B≈B x) → A≈A x } } } -∪-monotone : ∀ {a aℓ b bℓ} → _∪_ Preserves₂ _≤_ {a} {aℓ} ⟶ _≤_ {b} {bℓ} ⟶ _≤_ -∪-monotone X≤Y U≤V = record +∪-mono : ∀ {a b} → _∪_ Preserves₂ _≤_ {a} ⟶ _≤_ {b} ⟶ _≤_ +∪-mono X≤Y U≤V = record { f = Sum.map X≤Y.f U≤V.f - ; cong = λ { (A≈A l₁≈l₂) → A≈A (X≤Y.cong l₁≈l₂) ; (B≈B l₁≈l₂) → B≈B (U≤V.cong l₁≈l₂)} } where module X≤Y = _≤_ X≤Y module U≤V = _≤_ U≤V -∪-unique : ∀ {a aℓ b bℓ} {A : Language a aℓ} {B : Language b bℓ} → (∀ x → first A x → first B x → ⊥) → (𝕃.null A → 𝕃.null B → ⊥) → ∀ {l} → l ∈ A ∪ B → (l ∈ A × l ∉ B) ⊎ (l ∉ A × l ∈ B) +∪-unique : ∀ {a b} {A : Language a} {B : Language b} → (∀ x → first A x → first B x → ⊥) → (𝕃.null A → 𝕃.null B → ⊥) → ∀ {l} → l ∈ A ∪ B → (l ∈ A × l ∉ B) ⊎ (l ∉ A × l ∈ B) ∪-unique fA∩fB≡∅ ¬nA∨¬nB {[]} (inj₁ []∈A) = inj₁ ([]∈A , ¬nA∨¬nB []∈A) ∪-unique fA∩fB≡∅ ¬nA∨¬nB {x ∷ l} (inj₁ xl∈A) = inj₁ (xl∈A , (λ xl∈B → fA∩fB≡∅ x (-, xl∈A) (-, xl∈B))) ∪-unique fA∩fB≡∅ ¬nA∨¬nB {[]} (inj₂ []∈B) = inj₂ (flip ¬nA∨¬nB []∈B , []∈B) diff --git a/src/Cfe/Language/Indexed/Construct/Iterate.agda b/src/Cfe/Language/Indexed/Construct/Iterate.agda index 3a78bd8..5ed031b 100644 --- a/src/Cfe/Language/Indexed/Construct/Iterate.agda +++ b/src/Cfe/Language/Indexed/Construct/Iterate.agda @@ -49,60 +49,32 @@ module _ f≤g⇒fn≤gn f≤g (suc n) x = f≤g (f≤g⇒fn≤gn f≤g n x) module _ - {a aℓ} + {a} where - Iterate : (Language a aℓ → Language a aℓ) → IndexedLanguage 0ℓ 0ℓ a aℓ + Iterate : (Language a → Language a) → IndexedLanguage 0ℓ 0ℓ a Iterate f = record { Carrierᵢ = ℕ ; _≈ᵢ_ = ≡._≡_ ; isEquivalenceᵢ = ≡.isEquivalence - ; F = λ n → iter f n (Lift a aℓ ∅) + ; F = λ n → iter f n (Lift a ∅) ; cong = λ {≡.refl → ≈-refl} } - ≈ᵗ-refl : (g : Language a aℓ → Language a aℓ) → - Reflexive (Tagged (Iterate g)) (_≈ᵗ_ (Iterate g)) - ≈ᵗ-refl g {_} {n , _} = refl , (≈ᴸ-refl (Iter.F n)) - where - module Iter = IndexedLanguage (Iterate g) - - ≈ᵗ-sym : (g : Language a aℓ → Language a aℓ) → - Symmetric (Tagged (Iterate g)) (_≈ᵗ_ (Iterate g)) - ≈ᵗ-sym g {_} {_} {n , _} (refl , x∈Fn≈y∈Fn) = - refl , (≈ᴸ-sym (Iter.F n) x∈Fn≈y∈Fn) - where - module Iter = IndexedLanguage (Iterate g) - - ≈ᵗ-trans : (g : Language a aℓ → Language a aℓ) → - Transitive (Tagged (Iterate g)) (_≈ᵗ_ (Iterate g)) - ≈ᵗ-trans g {_} {_} {_} {n , _} (refl , x∈Fn≈y∈Fn) (refl , y∈Fn≈z∈Fn) = - refl , (≈ᴸ-trans (Iter.F n) x∈Fn≈y∈Fn y∈Fn≈z∈Fn) - where - module Iter = IndexedLanguage (Iterate g) - - ⋃ : (Language a aℓ → Language a aℓ) → Language a aℓ + ⋃ : (Language a → Language a) → Language a ⋃ f = record - { Carrier = Iter.Tagged - ; _≈_ = Iter._≈ᵗ_ - ; isEquivalence = record - { refl = ≈ᵗ-refl f - ; sym = ≈ᵗ-sym f - ; trans = ≈ᵗ-trans f - } + { 𝕃 = Iter.Tagged + ; ∈-resp-≋ = λ { l₁≋l₂ (i , l₁∈fi) → i , Language.∈-resp-≋ (Iter.F i) l₁≋l₂ l₁∈fi } } where module Iter = IndexedLanguage (Iterate f) - ⋃-cong : ∀ {f g : Language a aℓ → Language a aℓ} → (∀ {x y} → x ≈ y → f x ≈ g y) → ⋃ f ≈ ⋃ g + ⋃-cong : ∀ {f g} → (∀ {x y} → x ≈ y → f x ≈ g y) → ⋃ f ≈ ⋃ g ⋃-cong f≈g = record - { f = λ { (n , l∈fn) → n , _≈_.f (f≈g⇒fn≈gn (L.setoid a aℓ) f≈g n (Lift a aℓ ∅)) l∈fn} - ; f⁻¹ = λ { (n , l∈gn) → n , _≈_.f⁻¹ (f≈g⇒fn≈gn (L.setoid a aℓ) f≈g n (Lift a aℓ ∅)) l∈gn} - ; cong₁ = λ {_} {_} {(i , _)} → λ { (refl , l₁≈l₂) → refl , _≈_.cong₁ (f≈g⇒fn≈gn (L.setoid a aℓ) f≈g i (Lift a aℓ ∅)) l₁≈l₂} - ; cong₂ = λ {_} {_} {(i , _)} → λ { (refl , l₁≈l₂) → refl , _≈_.cong₂ (f≈g⇒fn≈gn (L.setoid a aℓ) f≈g i (Lift a aℓ ∅)) l₁≈l₂} + { f = λ { (n , l∈fn) → n , _≈_.f (f≈g⇒fn≈gn (L.setoid a) f≈g n (Lift a ∅)) l∈fn} + ; f⁻¹ = λ { (n , l∈gn) → n , _≈_.f⁻¹ (f≈g⇒fn≈gn (L.setoid a) f≈g n (Lift a ∅)) l∈gn} } - ⋃-monotone : ∀ {f g : Language a aℓ → Language a aℓ} → (∀ {x y} → x ≤ y → f x ≤ g y) → ⋃ f ≤ ⋃ g - ⋃-monotone f≤g = record - { f = λ { (n , l∈fn) → n , _≤_.f (f≤g⇒fn≤gn (poset a aℓ) f≤g n (Lift a aℓ ∅)) l∈fn } - ; cong = λ {_} {_} {(i , _)} → λ { (refl , l₁≈l₂) → refl , _≤_.cong (f≤g⇒fn≤gn (poset a aℓ) f≤g i (Lift a aℓ ∅)) l₁≈l₂ } + ⋃-mono : ∀ {f g} → (∀ {x y} → x ≤ y → f x ≤ g y) → ⋃ f ≤ ⋃ g + ⋃-mono f≤g = record + { f = λ { (n , l∈fn) → n , _≤_.f (f≤g⇒fn≤gn (poset a) f≤g n (Lift a ∅)) l∈fn } } diff --git a/src/Cfe/Language/Indexed/Homogeneous.agda b/src/Cfe/Language/Indexed/Homogeneous.agda index a1e284a..44e3b6c 100644 --- a/src/Cfe/Language/Indexed/Homogeneous.agda +++ b/src/Cfe/Language/Indexed/Homogeneous.agda @@ -16,18 +16,15 @@ open _≈_ open Setoid over using () renaming (Carrier to C) -record IndexedLanguage i iℓ a aℓ : Set (ℓ ⊔ suc (c ⊔ i ⊔ iℓ ⊔ a ⊔ aℓ)) where +record IndexedLanguage i iℓ a : Set (ℓ ⊔ suc (c ⊔ i ⊔ iℓ ⊔ a)) where field Carrierᵢ : Set i _≈ᵢ_ : B.Rel Carrierᵢ iℓ isEquivalenceᵢ : B.IsEquivalence _≈ᵢ_ - F : Carrierᵢ → Language a aℓ + F : Carrierᵢ → Language a cong : F B.Preserves _≈ᵢ_ ⟶ _≈_ open B.IsEquivalence isEquivalenceᵢ using () renaming (refl to reflᵢ; sym to symᵢ; trans to transᵢ) public Tagged : List C → Set (i ⊔ a) Tagged l = ∃[ i ] l ∈ F i - - _≈ᵗ_ : IRel Tagged (iℓ ⊔ aℓ) - _≈ᵗ_ (i , l∈Fi) (j , m∈Fj) = Σ (i ≈ᵢ j) λ i≈j → ≈ᴸ (F j) (f (cong i≈j) l∈Fi) m∈Fj diff --git a/src/Cfe/Language/Properties.agda b/src/Cfe/Language/Properties.agda index 325b410..b2630ce 100644 --- a/src/Cfe/Language/Properties.agda +++ b/src/Cfe/Language/Properties.agda @@ -15,87 +15,75 @@ open import Data.List.Relation.Binary.Equality.Setoid over open import Function open import Level -≈-refl : ∀ {a aℓ} → Reflexive (_≈_ {a} {aℓ}) +≈-refl : ∀ {a} → Reflexive (_≈_ {a}) ≈-refl {x = A} = record { f = id ; f⁻¹ = id - ; cong₁ = id - ; cong₂ = id } -≈-sym : ∀ {a aℓ b bℓ} → Sym (_≈_ {a} {aℓ} {b} {bℓ}) _≈_ +≈-sym : ∀ {a b} → Sym (_≈_ {a} {b}) _≈_ ≈-sym A≈B = record { f = A≈B.f⁻¹ ; f⁻¹ = A≈B.f - ; cong₁ = A≈B.cong₂ - ; cong₂ = A≈B.cong₁ } where module A≈B = _≈_ A≈B -≈-trans : ∀ {a aℓ b bℓ c cℓ} → Trans (_≈_ {a} {aℓ}) (_≈_ {b} {bℓ} {c} {cℓ}) _≈_ +≈-trans : ∀ {a b c} → Trans (_≈_ {a}) (_≈_ {b} {c}) _≈_ ≈-trans {i = A} {B} {C} A≈B B≈C = record { f = B≈C.f ∘ A≈B.f ; f⁻¹ = A≈B.f⁻¹ ∘ B≈C.f⁻¹ - ; cong₁ = B≈C.cong₁ ∘ A≈B.cong₁ - ; cong₂ = A≈B.cong₂ ∘ B≈C.cong₂ } where module A≈B = _≈_ A≈B module B≈C = _≈_ B≈C -≈-isEquivalence : ∀ {a aℓ} → IsEquivalence (_≈_ {a} {aℓ} {a} {aℓ}) +≈-isEquivalence : ∀ {a} → IsEquivalence (_≈_ {a}) ≈-isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } -setoid : ∀ a aℓ → Setoid (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ) -setoid a aℓ = record { isEquivalence = ≈-isEquivalence {a} {aℓ} } +setoid : ∀ a → Setoid (c ⊔ ℓ ⊔ suc a) (c ⊔ ℓ ⊔ a) +setoid a = record { isEquivalence = ≈-isEquivalence {a} } -≤-refl : ∀ {a aℓ} → Reflexive (_≤_ {a} {aℓ}) +≤-refl : ∀ {a} → Reflexive (_≤_ {a}) ≤-refl = record { f = id - ; cong = id } -≤-reflexive : ∀ {a aℓ b bℓ} → _≈_ {a} {aℓ} {b} {bℓ} ⇒ _≤_ +≤-reflexive : ∀ {a b} → _≈_ {a} {b} ⇒ _≤_ ≤-reflexive A≈B = record { f = A≈B.f - ; cong = A≈B.cong₁ } where module A≈B = _≈_ A≈B -≤-trans : ∀ {a aℓ b bℓ c cℓ} → Trans (_≤_ {a} {aℓ}) (_≤_ {b} {bℓ} {c} {cℓ}) _≤_ +≤-trans : ∀ {a b c} → Trans (_≤_ {a}) (_≤_ {b} {c}) _≤_ ≤-trans A≤B B≤C = record { f = B≤C.f ∘ A≤B.f - ; cong = B≤C.cong ∘ A≤B.cong } where module A≤B = _≤_ A≤B module B≤C = _≤_ B≤C -≤-antisym : ∀ {a aℓ b bℓ} → Antisym (_≤_ {a} {aℓ} {b} {bℓ}) _≤_ _≈_ +≤-antisym : ∀ {a b} → Antisym (_≤_ {a} {b}) _≤_ _≈_ ≤-antisym A≤B B≤A = record { f = A≤B.f ; f⁻¹ = B≤A.f - ; cong₁ = A≤B.cong - ; cong₂ = B≤A.cong } where module A≤B = _≤_ A≤B module B≤A = _≤_ B≤A -≤-min : ∀ {b bℓ} → Min (_≤_ {b = b} {bℓ}) ∅ +≤-min : ∀ {b} → Min (_≤_ {b = b}) ∅ ≤-min A = record { f = λ () - ; cong = λ {_} {_} {} } -≤-isPartialOrder : ∀ a aℓ → IsPartialOrder (_≈_ {a} {aℓ}) _≤_ -≤-isPartialOrder a aℓ = record +≤-isPartialOrder : ∀ a → IsPartialOrder (_≈_ {a}) _≤_ +≤-isPartialOrder a = record { isPreorder = record { isEquivalence = ≈-isEquivalence ; reflexive = ≤-reflexive @@ -104,5 +92,5 @@ setoid a aℓ = record { isEquivalence = ≈-isEquivalence {a} {aℓ} } ; antisym = ≤-antisym } -poset : ∀ a aℓ → Poset (suc (c ⊔ a ⊔ aℓ)) (c ⊔ ℓ ⊔ a ⊔ aℓ) (c ⊔ a ⊔ aℓ) -poset a aℓ = record { isPartialOrder = ≤-isPartialOrder a aℓ } +poset : ∀ a → Poset (c ⊔ ℓ ⊔ suc a) (c ⊔ ℓ ⊔ a) (c ⊔ a) +poset a = record { isPartialOrder = ≤-isPartialOrder a } diff --git a/src/Cfe/Type/Base.agda b/src/Cfe/Type/Base.agda index 371bc2f..a5ed780 100644 --- a/src/Cfe/Type/Base.agda +++ b/src/Cfe/Type/Base.agda @@ -48,7 +48,7 @@ _∙_ {lℓ₁ = lℓ₁} {fℓ₂} {lℓ₂} τ₁ τ₂ = record ; Flast = Flast τ₂ ∪ (if Null τ₂ then First τ₂ ∪ Flast τ₁ else λ x → L.Lift (lℓ₁ ⊔ fℓ₂) (x U.∈ U.∅)) } -record _⊨_ {a} {aℓ} {fℓ} {lℓ} (A : Language a aℓ) (τ : Type fℓ lℓ) : Set (c ⊔ a ⊔ fℓ ⊔ lℓ) where +record _⊨_ {a} {fℓ} {lℓ} (A : Language a) (τ : Type fℓ lℓ) : Set (c ⊔ a ⊔ fℓ ⊔ lℓ) where field n⇒n : null A → T (Null τ) f⇒f : first A ⊆ First τ diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 2222fbe..cfdf694 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -13,10 +13,11 @@ open import Cfe.Language.Construct.Single over open import Cfe.Type.Base over open import Data.Empty open import Data.List +open import Data.List.Relation.Binary.Equality.Setoid over open import Data.Product open import Function -⊨-anticongˡ : ∀ {a aℓ b bℓ fℓ lℓ} {A : Language a aℓ} {B : Language b bℓ} {τ : Type fℓ lℓ} → B ≤ A → A ⊨ τ → B ⊨ τ +⊨-anticongˡ : ∀ {a b fℓ lℓ} {A : Language a} {B : Language b} {τ : Type fℓ lℓ} → B ≤ A → A ⊨ τ → B ⊨ τ ⊨-anticongˡ B≤A A⊨τ = record { n⇒n = A⊨τ.n⇒n ∘ B≤A.f ; f⇒f = A⊨τ.f⇒f ∘ map₂ B≤A.f @@ -26,12 +27,10 @@ open import Function module B≤A = _≤_ B≤A module A⊨τ = _⊨_ A⊨τ -L⊨τ⊥⇒L≈∅ : ∀ {a aℓ} {L : Language a aℓ} → L ⊨ τ⊥ → L ≈ ∅ +L⊨τ⊥⇒L≈∅ : ∀ {a} {L : Language a} → L ⊨ τ⊥ → L ≈ ∅ L⊨τ⊥⇒L≈∅ {L = L} L⊨τ⊥ = record { f = λ {l} → elim l ; f⁻¹ = λ () - ; cong₁ = λ {l} {_} {l∈L} → ⊥-elim (elim l l∈L) - ; cong₂ = λ {_} {_} {} } where module L⊨τ⊥ = _⊨_ L⊨τ⊥ @@ -47,10 +46,9 @@ L⊨τ⊥⇒L≈∅ {L = L} L⊨τ⊥ = record ; l⇒l = λ () } -L⊨τε⇒L≤{ε} : ∀ {a aℓ} {L : Language a aℓ} → L ⊨ τε → L ≤ {ε} +L⊨τε⇒L≤{ε} : ∀ {a} {L : Language a} → L ⊨ τε → L ≤ {ε} L⊨τε⇒L≤{ε}{L = L} L⊨τε = record { f = λ {l} → elim l - ; cong = const tt } where open import Data.Unit @@ -73,16 +71,12 @@ L⊨τε⇒L≤{ε}{L = L} L⊨τε = record {c}⊨τ[c] : ∀ c → { c } ⊨ τ[ c ] {c}⊨τ[c] c = record { n⇒n = λ () - ; f⇒f = λ {x} → λ {([] , (a , eq , a∼c)) → begin - c ≈˘⟨ a∼c ⟩ - a ≡˘⟨ proj₁ (∷-injective eq) ⟩ - x ∎} - ; l⇒l = λ + ; f⇒f = λ {x} → λ {([] , (c∼x ∷ []≋[])) → c∼x} + ; l⇒l = λ {x} → λ { ([] , []≢[] , _) → ⊥-elim ([]≢[] refl) - ; (x ∷ [] , x∷[]≢[] , ()) + ; (y ∷ [] , _ , l′ , y∷x∷l′∈{c}) → ⊥-elim (xy∉{c} c y x l′ y∷x∷l′∈{c}) + ; (y ∷ z ∷ l , _ , l′ , y∷z∷l++x∷l′∈{c}) → ⊥-elim (xy∉{c} c y z (l ++ x ∷ l′) y∷z∷l++x∷l′∈{c}) } } where - open import Data.List.Properties - open import Relation.Binary.Reasoning.Setoid over open import Relation.Binary.PropositionalEquality |