diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:18:31 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-20 18:18:31 +0000 |
commit | 16afd9dff6798509a1d654b0f06e409353e01180 (patch) | |
tree | 7ab60d6609e7d587c82d02ba5f2f6d5790d6080a | |
parent | 5867701e6687a93e42a75347397ad0663fbb8f58 (diff) |
Change judgement to use variable contexts.
Add some useful context transformations.
-rw-r--r-- | src/Cfe/Expression/Base.agda | 16 | ||||
-rw-r--r-- | src/Cfe/Judgement/Base.agda | 102 |
2 files changed, 95 insertions, 23 deletions
diff --git a/src/Cfe/Expression/Base.agda b/src/Cfe/Expression/Base.agda index 2023a71..c3367c2 100644 --- a/src/Cfe/Expression/Base.agda +++ b/src/Cfe/Expression/Base.agda @@ -66,16 +66,16 @@ Var j [ e′ / i ] with i F.≟ j ... | no i≢j = Var (punchOut i≢j) μ e [ e′ / i ] = μ (e [ wkn e′ F.zero / suc i ]) -shift : ∀ {n} → Expression n → (i j : Fin n) → .(_ : i F.≤ j) → Expression n -shift ⊥ _ _ _ = ⊥ -shift ε _ _ _ = ε -shift (Char x) _ _ _ = Char x -shift (e₁ ∨ e₂) i j i≤j = shift e₁ i j i≤j ∨ shift e₂ i j i≤j -shift (e₁ ∙ e₂) i j i≤j = shift e₁ i j i≤j ∙ shift e₂ i j i≤j -shift {suc n} (Var k) i j _ with i F.≟ k +rotate : ∀ {n} → Expression n → (i j : Fin n) → .(_ : i F.≤ j) → Expression n +rotate ⊥ _ _ _ = ⊥ +rotate ε _ _ _ = ε +rotate (Char x) _ _ _ = Char x +rotate (e₁ ∨ e₂) i j i≤j = rotate e₁ i j i≤j ∨ rotate e₂ i j i≤j +rotate (e₁ ∙ e₂) i j i≤j = rotate e₁ i j i≤j ∙ rotate e₂ i j i≤j +rotate {suc n} (Var k) i j _ with i F.≟ k ... | yes i≡k = Var j ... | no i≢k = Var (punchIn j (punchOut i≢k)) -shift (μ e) i j i≤j = μ (shift e (suc i) (suc j) (s≤s i≤j)) +rotate (μ e) i j i≤j = μ (rotate e (suc i) (suc j) (s≤s i≤j)) ⟦_⟧ : ∀ {n : ℕ} → Expression n → Vec (Language (c ⊔ ℓ)) n → Language (c ⊔ ℓ) ⟦ ⊥ ⟧ _ = Lift (c ⊔ ℓ) ∅ diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda index 475968c..4bb7b67 100644 --- a/src/Cfe/Judgement/Base.agda +++ b/src/Cfe/Judgement/Base.agda @@ -6,16 +6,44 @@ module Cfe.Judgement.Base {c ℓ} (over : Setoid c ℓ) where -open import Cfe.Expression over renaming (shift to shiftₑ) +open import Cfe.Expression over hiding (rotate) open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_) open import Cfe.Type.Construct.Lift over +open import Data.Empty using (⊥-elim) open import Data.Fin as F -open import Data.Fin.Properties +open import Data.Fin.Properties hiding (≤-trans) open import Data.Nat as ℕ hiding (_⊔_) open import Data.Nat.Properties +open import Data.Product open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′) +open import Function open import Level hiding (Lift) renaming (suc to lsuc) open import Relation.Binary.PropositionalEquality +open import Relation.Nullary + +private + insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m) + insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl) + insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs + insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x + insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n) + insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x + + reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m) + reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i + reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m) + + reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j) + reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j + reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j) + + remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m) + remove′ (x ∷ xs) m≢0 F.zero = xs + remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i + + rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n + rotate F.zero j i≤j (x ∷ xs) = insert xs j x + rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs) record Context n : Set (c ⊔ lsuc ℓ) where field @@ -24,20 +52,64 @@ record Context n : Set (c ⊔ lsuc ℓ) where Γ : Vec (Type ℓ ℓ) (n ∸ m) Δ : Vec (Type ℓ ℓ) m --- Fin n → Fin n∸m - lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ - lookup i i≥m = lookup′ Γ (reduce≥ - (F.cast (begin-equality - n ≡˘⟨ m+n∸m≡n m n ⟩ - m ℕ.+ n ∸ m ≡⟨ +-∸-assoc m m≤n ⟩ - m ℕ.+ (n ∸ m) ∎) i) - (begin - m ≤⟨ i≥m ⟩ - toℕ i ≡˘⟨ toℕ-cast _ i ⟩ - toℕ (F.cast _ i) ∎)) - where - open ≤-Reasoning + lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m) + +wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₁ Γ,Δ i i≥m τ = record + { m≤n = ≤-step m≤n + ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ) + ; Δ = Δ + } + where + open Context Γ,Δ + +wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n) +wkn₂ Γ,Δ i i<m τ = record + { m≤n = s≤s m≤n + ; Γ = Γ + ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ + } + where + open Context Γ,Δ + +rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n +rotate₁ {n} Γ,Δ i j i≥m i≤j = record + { m≤n = m≤n + ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ + ; Δ = Δ + } + where + open Context Γ,Δ + +rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n +rotate₂ {n} Γ,Δ i j j<m i≤j = record + { m≤n = m≤n + ; Γ = Γ + ; Δ = rotate + (fromℕ< (≤-trans (s≤s i≤j) j<m)) + (fromℕ< j<m) + (begin + toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩ + toℕ i ≤⟨ i≤j ⟩ + toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩ + toℕ (fromℕ< j<m) ∎) + Δ + } + where + open Context Γ,Δ + open ≤-Reasoning + +transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n +transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0 +... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0) +... | no m≢0 = record + { m≤n = pred-mono (≤-step m≤n) + ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup′ Δ (fromℕ< i<m)) + ; Δ = remove′ Δ m≢0 (fromℕ< i<m) + } + where + open Context Γ,Δ cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n) cons {n} τ Γ,Δ = record |