diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-25 18:01:19 +0000 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-03-25 18:01:19 +0000 |
commit | ba7e3b5d9c868af4b5dd7c3af72c48a1dd27cc31 (patch) | |
tree | 42e9ec97d50edfd46afeb920260b1dc29058696f | |
parent | abe9461e0dc194c160d97fee23a1646097a0c264 (diff) |
Prove sequential unique decomposition.
Fix faulty definition of flast set.
-rw-r--r-- | src/Cfe/Language/Base.agda | 2 | ||||
-rw-r--r-- | src/Cfe/Language/Construct/Concatenate.agda | 87 | ||||
-rw-r--r-- | src/Cfe/Type/Properties.agda | 50 |
3 files changed, 119 insertions, 20 deletions
diff --git a/src/Cfe/Language/Base.agda b/src/Cfe/Language/Base.agda index bda9000..3e954b2 100644 --- a/src/Cfe/Language/Base.agda +++ b/src/Cfe/Language/Base.agda @@ -68,4 +68,4 @@ first : ∀ {a} → Language a → C → Set (c ⊔ a) first A x = ∃[ l ] x ∷ l ∈ A flast : ∀ {a} → Language a → C → Set (c ⊔ a) -flast A x = ∃[ l ] (l ≢ [] × ∃[ l′ ] l ++ x ∷ l′ ∈ A) +flast A x = ∃[ l ] (l ≢ [] × l ∈ A × ∃[ l′ ] l ++ x ∷ l′ ∈ A) diff --git a/src/Cfe/Language/Construct/Concatenate.agda b/src/Cfe/Language/Construct/Concatenate.agda index 428e8a4..8dff2ff 100644 --- a/src/Cfe/Language/Construct/Concatenate.agda +++ b/src/Cfe/Language/Construct/Concatenate.agda @@ -9,16 +9,19 @@ module Cfe.Language.Construct.Concatenate open import Algebra open import Cfe.Language over as 𝕃 open import Data.Empty -open import Data.List +open import Data.List hiding (null) open import Data.List.Relation.Binary.Equality.Setoid over open import Data.List.Properties open import Data.Product as Product +open import Data.Unit using (⊤) open import Function open import Level open import Relation.Binary.PropositionalEquality as ≡ +open import Relation.Nullary +open import Relation.Unary hiding (_∈_) import Relation.Binary.Indexed.Heterogeneous as I -open Setoid over using () renaming (Carrier to C) +open Setoid over using () renaming (Carrier to C; _≈_ to _∼_; refl to ∼-refl; sym to ∼-sym; trans to ∼-trans) module _ {a b} @@ -85,3 +88,83 @@ isMonoid {a} = record where module X≤Y = _≤_ X≤Y module U≤V = _≤_ U≤V + +private + data Compare : List C → List C → List C → List C → Set (c ⊔ ℓ) where + -- left : ∀ {ws₁ w ws₂ xs ys z zs₁ zs₂} → (ws₁≋ys : ws₁ ≋ ys) → (w∼z : w ∼ z) → (ws₂≋zs₁ : ws₂ ≋ zs₁) → (xs≋zs₂ : xs ≋ zs₂) → Compare (ws₁ ++ w ∷ ws₂) xs ys (z ∷ zs₁ ++ zs₂) + -- right : ∀ {ws x xs₁ xs₂ ys₁ y ys₂ zs} → (ws≋ys₁ : ws ≋ ys₁) → (x∼y : x ∼ y) → (xs₁≋ys₂ : xs₁ ≋ ys₂) → (xs₂≋zs : xs₂ ≋ zs) → Compare ws (x ∷ xs₁ ++ xs₂) (ys₁ ++ y ∷ ys₂) zs + back : ∀ {xs zs} → (xs≋zs : xs ≋ zs) → Compare [] xs [] zs + left : ∀ {w ws xs z zs} → Compare ws xs [] zs → (w∼z : w ∼ z) → Compare (w ∷ ws) xs [] (z ∷ zs) + right : ∀ {x xs y ys zs} → Compare [] xs ys zs → (x∼y : x ∼ y) → Compare [] (x ∷ xs) (y ∷ ys) zs + front : ∀ {w ws xs y ys zs} → Compare ws xs ys zs → (w∼y : w ∼ y) → Compare (w ∷ ws) xs (y ∷ ys) zs + + isLeft : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set + isLeft (back xs≋zs) = ⊥ + isLeft (left cmp w∼z) = ⊤ + isLeft (right cmp x∼y) = ⊥ + isLeft (front cmp w∼y) = isLeft cmp + + isRight : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set + isRight (back xs≋zs) = ⊥ + isRight (left cmp w∼z) = ⊥ + isRight (right cmp x∼y) = ⊤ + isRight (front cmp w∼y) = isRight cmp + + isEqual : ∀ {ws xs ys zs} → Compare ws xs ys zs → Set + isEqual (back xs≋zs) = ⊤ + isEqual (left cmp w∼z) = ⊥ + isEqual (right cmp x∼y) = ⊥ + isEqual (front cmp w∼y) = isEqual cmp + + <?> : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → Tri (isLeft cmp) (isEqual cmp) (isRight cmp) + <?> (back xs≋zs) = tri≈ id _ id + <?> (left cmp w∼z) = tri< _ id id + <?> (right cmp x∼y) = tri> id id _ + <?> (front cmp w∼y) = <?> cmp + + compare : ∀ ws xs ys zs → ws ++ xs ≋ ys ++ zs → Compare ws xs ys zs + compare [] xs [] zs eq = back eq + compare [] (x ∷ xs) (y ∷ ys) zs (x∼y ∷ eq) = right (compare [] xs ys zs eq) x∼y + compare (w ∷ ws) xs [] (z ∷ zs) (w∼z ∷ eq) = left (compare ws xs [] zs eq) w∼z + compare (w ∷ ws) xs (y ∷ ys) zs (w∼y ∷ eq) = front (compare ws xs ys zs eq) w∼y + + left-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isLeft cmp → ∃[ w ] ∃[ ws′ ] ws ≋ ys ++ w ∷ ws′ × w ∷ ws′ ++ xs ≋ zs + left-split (left (back xs≋zs) w∼z) _ = -, -, ≋-refl , w∼z ∷ xs≋zs + left-split (left (left cmp w′∼z′) w∼z) _ with left-split (left cmp w′∼z′) _ + ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , w∼z ∷ eq₂ + left-split (front cmp w∼y) l with left-split cmp l + ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ + + right-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isRight cmp → ∃[ y ] ∃[ ys′ ] ws ++ y ∷ ys′ ≋ ys × xs ≋ y ∷ ys′ ++ zs + right-split (right (back xs≋zs) x∼y) _ = -, -, ≋-refl , x∼y ∷ xs≋zs + right-split (right (right cmp x′∼y′) x∼y) _ with right-split (right cmp x′∼y′) _ + ... | (_ , _ , eq₁ , eq₂) = -, -, ∼-refl ∷ eq₁ , x∼y ∷ eq₂ + right-split (front cmp w∼y) r with right-split cmp r + ... | (_ , _ , eq₁ , eq₂) = -, -, w∼y ∷ eq₁ , eq₂ + + eq-split : ∀ {ws xs ys zs} → (cmp : Compare ws xs ys zs) → isEqual cmp → ws ≋ ys + eq-split (back xs≋zs) e = [] + eq-split (front cmp w∼y) e = w∼y ∷ eq-split cmp e + +∙-unique-prefix : ∀ {a b} (A : Language a) (B : Language b) → Empty (flast A ∩ first B) → ¬ (null A) → ∀ {l} → (l∈A∙B l∈A∙B′ : l ∈ A ∙ B) → proj₁ l∈A∙B ≋ proj₁ l∈A∙B′ +∙-unique-prefix _ _ _ ¬n₁ ([] , l₁∈A , _) _ = ⊥-elim (¬n₁ l₁∈A) +∙-unique-prefix _ _ _ ¬n₁ (_ ∷ _ , _) ([] , l₁′∈A , _) = ⊥-elim (¬n₁ l₁′∈A) +∙-unique-prefix A B ∄[l₁∩f₂] _ (c ∷ l₁ , l₁∈A , l₂ , l₂∈B , eq₁) (c′ ∷ l₁′ , l₁′∈A , l₂′ , l₂′∈B , eq₂) with compare (c ∷ l₁) l₂ (c′ ∷ l₁′) l₂′ (≋-trans eq₁ (≋-sym eq₂)) +... | cmp with <?> cmp +... | tri< l _ _ = ⊥-elim (∄[l₁∩f₂] w ((-, (λ ()) , l₁′∈A , -, A.∈-resp-≋ eq₃ l₁∈A) , (-, B.∈-resp-≋ (≋-sym eq₄) l₂′∈B))) + where + module A = Language A + module B = Language B + lsplit = left-split cmp l + w = proj₁ lsplit + eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) lsplit + eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) lsplit +... | tri≈ _ e _ = eq-split cmp e +... | tri> _ _ r = ⊥-elim (∄[l₁∩f₂] w ((-, (λ ()) , l₁∈A , -, A.∈-resp-≋ (≋-sym eq₃) l₁′∈A) , (-, (B.∈-resp-≋ eq₄ l₂∈B)))) + where + module A = Language A + module B = Language B + rsplit = right-split cmp r + w = proj₁ rsplit + eq₃ = (proj₁ ∘ proj₂ ∘ proj₂) rsplit + eq₄ = (proj₂ ∘ proj₂ ∘ proj₂) rsplit diff --git a/src/Cfe/Type/Properties.agda b/src/Cfe/Type/Properties.agda index 134bfce..37f491b 100644 --- a/src/Cfe/Type/Properties.agda +++ b/src/Cfe/Type/Properties.agda @@ -16,11 +16,12 @@ open import Cfe.Language.Construct.Union over open import Cfe.Language.Indexed.Construct.Iterate over open import Cfe.Type.Base over open import Data.Bool renaming (_≤_ to _≤ᵇ_; _∨_ to _∨ᵇ_) -open import Data.Bool.Properties hiding (≤-reflexive) +open import Data.Bool.Properties hiding (≤-reflexive; ≤-trans) open import Data.Empty open import Data.List hiding (null) open import Data.List.Relation.Binary.Equality.Setoid over -open import Data.Nat hiding (_≤_; _≤ᵇ_; _^_) +open import Data.Nat hiding (_≤ᵇ_; _^_) renaming (_≤_ to _≤ⁿ_) +open import Data.Nat.Properties using (≤-stepsˡ; ≤-stepsʳ) renaming (≤-refl to ≤ⁿ-refl) open import Data.Product as Product open import Data.Sum as Sum open import Function hiding (_⟶_) @@ -44,7 +45,7 @@ L⊨τ+¬N⇒ε∉L {L = L} {τ} L⊨τ ¬n ε∈L = case ∃[ b ] ((null L → ⊨-anticongˡ B≤A A⊨τ = record { n⇒n = A⊨τ.n⇒n ∘ B≤A.f ; f⇒f = A⊨τ.f⇒f ∘ Product.map₂ B≤A.f - ; l⇒l = A⊨τ.l⇒l ∘ Product.map₂ (Product.map₂ (Product.map₂ B≤A.f)) + ; l⇒l = A⊨τ.l⇒l ∘ Product.map₂ (Product.map₂ (Product.map B≤A.f (Product.map₂ B≤A.f))) } where module B≤A = _≤ˡ_ B≤A @@ -108,8 +109,8 @@ L⊨τε⇒L≤{ε}{L = L} L⊨τε = record ; f⇒f = λ {x} → λ {([] , (c∼x ∷ []≋[])) → c∼x} ; l⇒l = λ {x} → λ { ([] , []≢[] , _) → ⊥-elim ([]≢[] refl) - ; (y ∷ [] , _ , l′ , y∷x∷l′∈{c}) → ⊥-elim (xy∉{c} c y x l′ y∷x∷l′∈{c}) - ; (y ∷ z ∷ l , _ , l′ , y∷z∷l++x∷l′∈{c}) → ⊥-elim (xy∉{c} c y z (l ++ x ∷ l′) y∷z∷l++x∷l′∈{c}) + ; (y ∷ [] , _ , _ , l′ , y∷x∷l′∈{c}) → ⊥-elim (xy∉{c} c y x l′ y∷x∷l′∈{c}) + ; (y ∷ z ∷ l , _ , _ , l′ , y∷z∷l++x∷l′∈{c}) → ⊥-elim (xy∉{c} c y z (l ++ x ∷ l′) y∷z∷l++x∷l′∈{c}) } } where @@ -131,8 +132,8 @@ L⊨τε⇒L≤{ε}{L = L} L⊨τε = record module τ₁⊛τ₂ = _⊛_ τ₁⊛τ₂ ∪-⊨ : ∀ {a b fℓ₁ lℓ₁ fℓ₂ lℓ₂} {A : Language a} {B : Language b} {τ₁ : Type fℓ₁ lℓ₁} {τ₂ : Type fℓ₂ lℓ₂} → - A ⊨ τ₁ → B ⊨ τ₂ → A ∪ B ⊨ τ₁ ∨ τ₂ -∪-⊨ {A = A} {B} {τ₁} {τ₂} A⊨τ₁ B⊨τ₂ = record + A ⊨ τ₁ → B ⊨ τ₂ → τ₁ # τ₂ → A ∪ B ⊨ τ₁ ∨ τ₂ +∪-⊨ {A = A} {B} {τ₁} {τ₂} A⊨τ₁ B⊨τ₂ τ₁#τ₂ = record { n⇒n = λ { (inj₁ ε∈A) → case ∃[ b ] T b ∋ Null τ₁ , A⊨τ₁.n⇒n ε∈A return (λ {(x , _) → T (x ∨ᵇ Null τ₂)}) of λ { (true , _) → _ } @@ -144,21 +145,36 @@ L⊨τε⇒L≤{ε}{L = L} L⊨τε = record ; (l , inj₂ x∷l∈B) → inj₂ (B⊨τ₂.f⇒f (-, x∷l∈B)) } ; l⇒l = λ - { (l , l≢ε , l′ , inj₁ l++x∷l′∈A ) → inj₁ (A⊨τ₁.l⇒l (-, l≢ε , -, l++x∷l′∈A)) - ; (l , l≢ε , l′ , inj₂ l++x∷l′∈B ) → inj₂ (B⊨τ₂.l⇒l (-, l≢ε , -, l++x∷l′∈B)) + { ([] , l≢ε , l∈A∪B , l′ , l++x∷l′∈A∪B) → ⊥-elim (l≢ε refl) + ; (_ ∷ _ , _ , inj₁ l∈A , _ , inj₁ l++x∷l′∈A) → inj₁ (A⊨τ₁.l⇒l (-, (λ ()) , l∈A , -, l++x∷l′∈A)) + ; (c ∷ _ , _ , inj₁ c∷u∈A , l′ , inj₂ c∷v∈B) → ⊥-elim (τ₁#τ₂.∄[f₁∩f₂] c (A⊨τ₁.f⇒f (-, c∷u∈A) , B⊨τ₂.f⇒f (-, c∷v∈B))) + ; (c ∷ _ , _ , inj₂ c∷u∈B , l′ , inj₁ c∷v∈A) → ⊥-elim (τ₁#τ₂.∄[f₁∩f₂] c (A⊨τ₁.f⇒f (-, c∷v∈A) , B⊨τ₂.f⇒f (-, c∷u∈B))) + ; (_ ∷ _ , _ , inj₂ l∈B , _ , inj₂ l++x∷l′∈B) → inj₂ (B⊨τ₂.l⇒l (-, (λ ()) , l∈B , -, l++x∷l′∈B)) } } where + module τ₁#τ₂ = _#_ τ₁#τ₂ module A⊨τ₁ = _⊨_ A⊨τ₁ module B⊨τ₂ = _⊨_ B⊨τ₂ -⋃-⊨ : ∀ {a fℓ lℓ} {F : Op₁ (Language a)} {τ : Type fℓ lℓ} → (∀ {L} → L ⊨ τ → F L ⊨ τ) → ⋃ F ⊨ τ -⋃-⊨ {a} {F = F} {τ} mono = record - { n⇒n = λ { (n , l∈F^n) → _⊨_.n⇒n (F^n⊨τ n) l∈F^n} - ; f⇒f = λ { (_ , n , x∷l∈F^n) → _⊨_.f⇒f (F^n⊨τ n) (-, x∷l∈F^n) } - ; l⇒l = λ { (_ , l≢ε , _ , n , l++x∷l′∈F^n) → _⊨_.l⇒l (F^n⊨τ n) (-, l≢ε , -, l++x∷l′∈F^n) } +⋃-⊨ : ∀ {a fℓ lℓ} {F : Op₁ (Language a)} {τ : Type fℓ lℓ} → + (Congruent₁ _≤ˡ_ F) → + (∀ {L} → L ⊨ τ → F L ⊨ τ) → ⋃ F ⊨ τ +⋃-⊨ {a} {F = F} {τ} ≤-mono ⊨-mono = record + { n⇒n = λ { (n , l∈Fⁿ) → _⊨_.n⇒n (Fⁿ⊨τ n) l∈Fⁿ} + ; f⇒f = λ { (_ , n , x∷l∈Fⁿ) → _⊨_.f⇒f (Fⁿ⊨τ n) (-, x∷l∈Fⁿ) } + ; l⇒l = λ + { (_ , l≢ε , (m , l∈Fᵐ) , _ , (n , l++x∷l′∈Fⁿ)) → + _⊨_.l⇒l (Fⁿ⊨τ (m + n)) + (-, l≢ε , _≤ˡ_.f (^-mono (≤-stepsʳ {m} n ≤ⁿ-refl)) l∈Fᵐ , + -, _≤ˡ_.f (^-mono (≤-stepsˡ m ≤ⁿ-refl)) l++x∷l′∈Fⁿ) + } } where - F^n⊨τ : ∀ n → (F ^ n) (Lift a ∅) ⊨ τ - F^n⊨τ zero = ⊨-anticongˡ (≤-reflexive (lift-cong a ∅)) (⊨-congʳ (≤-min τ) ∅⊨τ⊥) - F^n⊨τ (suc n) = mono (F^n⊨τ n) + Fⁿ⊨τ : ∀ n → (F ^ n) (Lift a ∅) ⊨ τ + Fⁿ⊨τ zero = ⊨-anticongˡ (≤-reflexive (lift-cong a ∅)) (⊨-congʳ (≤-min τ) ∅⊨τ⊥) + Fⁿ⊨τ (suc n) = ⊨-mono (Fⁿ⊨τ n) + + ^-mono : ∀ {m n} → m ≤ⁿ n → (F ^ m) (Lift a ∅) ≤ˡ (F ^ n) (Lift a ∅) + ^-mono {n = n} z≤n = ≤-trans (≤-reflexive (lift-cong a ∅)) (≤ˡ-min ((F ^ n) (Lift a ∅))) + ^-mono (s≤s m≤n) = ≤-mono (^-mono m≤n) |