summaryrefslogtreecommitdiff
path: root/src/Cfe/Derivation/Base.agda
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2024-01-23 14:54:53 +0000
committerChloe Brown <chloe.brown.00@outlook.com>2024-01-23 14:54:53 +0000
commite7557267586b4c197663919ee83fa3e5c40e28f9 (patch)
treef68f2fd8656e5b6ef153afed980c076a1209d56a /src/Cfe/Derivation/Base.agda
parent06423f2a738b6ff94429ab84b4dcd3b443fd84bd (diff)
Prove derivations are structurally unique.HEADmaster
Diffstat (limited to 'src/Cfe/Derivation/Base.agda')
-rw-r--r--src/Cfe/Derivation/Base.agda5
1 files changed, 3 insertions, 2 deletions
diff --git a/src/Cfe/Derivation/Base.agda b/src/Cfe/Derivation/Base.agda
index 0432c3d..373b6b5 100644
--- a/src/Cfe/Derivation/Base.agda
+++ b/src/Cfe/Derivation/Base.agda
@@ -13,6 +13,7 @@ open import Data.Fin using (zero)
open import Data.List using (List; []; [_]; _++_)
open import Data.List.Relation.Binary.Equality.Setoid over using (_≋_)
open import Level using (_⊔_)
+open import Relation.Binary.Core using (Rel)
infix 5 _⤇_
infix 4 _≈_
@@ -29,10 +30,10 @@ data _≈_ : ∀ {e w w′} → REL (e ⤇ w) (e ⤇ w′) (c ⊔ ℓ) where
Eps : Eps ≈ Eps
Char : ∀ {c y y′} → (c∼y : c ∼ y) → (c∼y′ : c ∼ y′) → Char c∼y ≈ Char c∼y′
Cat :
- ∀ {e₁ e₂ w w₁ w₂ w₁′ w₂′ e₁⤇w₁ e₁⤇w₁′ e₂⤇w₂ e₂⤇w₂′} →
+ ∀ {e₁ e₂ w w′ w₁ w₂ w₁′ w₂′ e₁⤇w₁ e₁⤇w₁′ e₂⤇w₂ e₂⤇w₂′} →
(e₁⤇w₁≈e₁⤇w′ : _≈_ {e₁} {w₁} {w₁′} e₁⤇w₁ e₁⤇w₁′) →
(e₂⤇w₂≈e₂⤇w′ : _≈_ {e₂} {w₂} {w₂′} e₂⤇w₂ e₂⤇w₂′) →
- (eq : w₁ ++ w₂ ≋ w) → (eq′ : w₁′ ++ w₂′ ≋ w) →
+ (eq : w₁ ++ w₂ ≋ w) → (eq′ : w₁′ ++ w₂′ ≋ w′) →
Cat e₁⤇w₁ e₂⤇w₂ eq ≈ Cat e₁⤇w₁′ e₂⤇w₂′ eq′
Veeˡ :
∀ {e₁ e₂ w w′ e₁⤇w e₁⤇w′} →