summaryrefslogtreecommitdiff
path: root/src/Cfe/Derivation
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
committerChloe Brown <chloe.brown.00@outlook.com>2021-04-29 20:58:04 +0100
commit8abb1b5601fabf5e7560d08faa6e633e60663e0a (patch)
tree99e76379b280cc16bc869830ba3a3b89e5c99c12 /src/Cfe/Derivation
parent0708355c7988345c98961cad087dc56eeb16ea7f (diff)
Finally prove that e [ μ e / zero ] ≈ μ e.
Complete proof of generator.
Diffstat (limited to 'src/Cfe/Derivation')
-rw-r--r--src/Cfe/Derivation/Properties.agda87
1 files changed, 65 insertions, 22 deletions
diff --git a/src/Cfe/Derivation/Properties.agda b/src/Cfe/Derivation/Properties.agda
index d922f2a..99be370 100644
--- a/src/Cfe/Derivation/Properties.agda
+++ b/src/Cfe/Derivation/Properties.agda
@@ -1,6 +1,6 @@
{-# OPTIONS --without-K --safe #-}
-open import Relation.Binary using (Setoid)
+open import Relation.Binary using (Rel; Setoid)
module Cfe.Derivation.Properties
{c ℓ} (over : Setoid c ℓ)
@@ -8,30 +8,39 @@ module Cfe.Derivation.Properties
open Setoid over using () renaming (Carrier to C)
-open import Cfe.Context over using (∙,∙)
+open import Cfe.Context over using (_⊐_; Γ,Δ; ∙,∙; remove₁) renaming (wkn₂ to wkn₂ᶜ)
open import Cfe.Derivation.Base over
open import Cfe.Expression over
-open import Cfe.Fin using (zero)
+open import Cfe.Fin using (zero; inj; raise!>; cast>)
open import Cfe.Judgement over
open import Cfe.Language over hiding (_∙_)
+ renaming (_≈_ to _≈ˡ_; ≈-refl to ≈ˡ-refl; ≈-reflexive to ≈ˡ-reflexive; ≈-sym to ≈ˡ-sym)
open import Cfe.Type over using (_⊛_; _⊨_)
-open import Data.Fin using (zero)
-open import Data.List using (List; []; length)
-open import Data.List.Relation.Binary.Pointwise using ([]; _∷_)
-open import Data.Nat.Properties using (n<1+n; module ≤-Reasoning)
-open import Data.Product using (_×_; _,_; -,_)
-open import Data.Sum using (inj₁; inj₂)
-open import Data.Vec using ([]; [_])
-open import Data.Vec.Relation.Binary.Pointwise.Inductive using ([]; _∷_)
-open import Function using (_∘_)
+open import Cfe.Vec.Relation.Binary.Pointwise.Inductive using (Pointwise-insert)
+open import Data.Empty using (⊥-elim)
+open import Data.Fin using (Fin; zero; suc; _≟_; punchOut; punchIn)
+open import Data.Fin.Properties using (punchIn-punchOut)
+open import Data.List using (List; []; length; _++_)
+open import Data.List.Properties using (length-++)
+open import Data.List.Relation.Binary.Equality.Setoid over using (_≋_; []; _∷_)
+open import Data.List.Relation.Binary.Pointwise using (Pointwise-length)
+open import Data.Nat using (ℕ; zero; suc; z≤n; s≤s; _+_) renaming (_≤_ to _≤ⁿ_)
+open import Data.Nat.Properties using (n<1+n; m≤m+n; m≤n+m; m≤n⇒m<n∨m≡n; module ≤-Reasoning)
+open import Data.Product using (_×_; _,_; -,_; ∃-syntax; map₂; proj₁; proj₂)
+open import Data.Sum using (inj₁; inj₂; [_,_]′)
+open import Data.Vec using ([]; _∷_; [_]; lookup; insert)
+open import Data.Vec.Properties using (insert-lookup; insert-punchIn)
+open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pw using ([]; _∷_)
+open import Function using (_∘_; _|>_; _on_; flip)
open import Induction.WellFounded
-open import Level using (_⊔_)
-open import Relation.Binary.PropositionalEquality using (refl)
-import Relation.Binary.Reasoning.PartialOrder (⊆-poset {c ⊔ ℓ}) as ⊆-Reasoning
-open import Relation.Nullary using (¬_)
+open import Level using (_⊔_; lift)
+open import Relation.Binary.Construct.On using () renaming (wellFounded to on-wellFounded)
+open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
+open import Relation.Nullary
+open import Relation.Nullary.Decidable using (fromWitness)
-w∈⟦e⟧⇒e⤇w : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {w} → w ∈ ⟦ e ⟧ [] → e ⤇ w
-w∈⟦e⟧⇒e⤇w {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-wellFounded _ Pred go (w , e) ctx⊢e∶τ w∈⟦e⟧
+parse : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {w} → w ∈ ⟦ e ⟧ [] → e ⤇ w
+parse {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-wellFounded _ Pred go (w , e) ctx⊢e∶τ w∈⟦e⟧
where
Pred : (List C × Expression 0) → Set _
Pred (w , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → w ∈ ⟦ e ⟧ [] → e ⤇ w
@@ -55,14 +64,14 @@ w∈⟦e⟧⇒e⤇w {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-
⟦μe⟧⊆⟦e[μe/0]⟧ : ⟦ μ e ⟧ [] ⊆ ⟦ e [ μ e / zero ] ⟧ []
⟦μe⟧⊆⟦e[μe/0]⟧ = begin
- ⟦ μ e ⟧ [] ≤⟨ ⋃-unroll (⟦⟧-mono-env e ∘ (_∷ [])) ⟩
- ⟦ e ⟧ [ ⟦ μ e ⟧ [] ] ≈˘⟨ subst-cong e (μ e) zero [] ⟩
+ ⟦ μ e ⟧ [] ⊆⟨ ⋃-unroll (⟦⟧-mono-env e ∘ (_∷ [])) ⟩
+ ⟦ e ⟧ [ ⟦ μ e ⟧ [] ] ≈˘⟨ ⟦⟧-subst e (μ e) zero [] ⟩
⟦ e [ μ e / zero ] ⟧ [] ∎
where open ⊆-Reasoning
go (w , e₁ ∙ e₂) rec (Cat ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) (w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq) =
Cat
- (rec (w₁ , e₁) (lex-∙ˡ e₁ e₂ [] (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₁∶τ₁ w₁∈⟦e₁⟧)
- (rec (w₂ , e₂) (lex-∙ʳ e₁ e₂ [] ε∉⟦e₁⟧ (-, -, w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq)) ctx⊢e₂∶τ₂ w₂∈⟦e₂⟧)
+ (rec (w₁ , e₁) (lex-∙ˡ e₁ e₂ w₁ eq) ctx⊢e₁∶τ₁ w₁∈⟦e₁⟧)
+ (rec (w₂ , e₂) (lex-∙ʳ e₁ e₂ [] ε∉⟦e₁⟧ w₁∈⟦e₁⟧ eq) ctx⊢e₂∶τ₂ w₂∈⟦e₂⟧)
eq
where
open _⊛_ τ₁⊛τ₂ using (¬n₁)
@@ -72,3 +81,37 @@ w∈⟦e⟧⇒e⤇w {e = e} ctx⊢e∶τ {w} w∈⟦e⟧ = All.wfRec <ₗₑₓ-
Veeˡ (rec (w , e₁) (inj₂ (refl , rank-∨ˡ e₁ e₂)) ctx⊢e₁∶τ₁ w∈⟦e₁⟧)
go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (inj₂ w∈⟦e₂⟧) =
Veeʳ (rec (w , e₂) (inj₂ (refl , rank-∨ʳ e₁ e₂)) ctx⊢e₂∶τ₂ w∈⟦e₂⟧)
+
+generate : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {w} → e ⤇ w → w ∈ ⟦ e ⟧ []
+generate {e = e} ctx⊢e∶τ {w} e⤇w = All.wfRec <ₗₑₓ-wellFounded _ Pred go (w , e) ctx⊢e∶τ e⤇w
+ where
+ Pred : (List C × Expression 0) → Set _
+ Pred (w , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → e ⤇ w → w ∈ ⟦ e ⟧ []
+
+ go : ∀ w,e → WfRec _<ₗₑₓ_ Pred w,e → Pred w,e
+ go (w , ε) rec Eps Eps = lift refl
+ go (w , Char c) rec (Char c) (Char c∼y) = c∼y ∷ []
+ go (w , μ e) rec (Fix ctx⊢e∶τ) (Fix e[μe/0]⤇w) = ∈-resp-≈ (μ-roll e []) w∈⟦e[μe/0]⟧
+ where
+ w,e[μe/0]<ₗₑₓw,μe : (w , e [ μ e / zero ]) <ₗₑₓ (w , μ e)
+ w,e[μe/0]<ₗₑₓw,μe = inj₂ (refl , (begin-strict
+ rank (e [ μ e / zero ]) ≡⟨ subst₂-pres-rank ctx⊢e∶τ zero (Fix ctx⊢e∶τ) ⟩
+ rank e <⟨ rank-μ e ⟩
+ rank (μ e) ∎))
+ where open ≤-Reasoning
+
+ w∈⟦e[μe/0]⟧ : w ∈ ⟦ e [ μ e / zero ] ⟧ []
+ w∈⟦e[μe/0]⟧ = rec (w , e [ μ e / zero ]) w,e[μe/0]<ₗₑₓw,μe (subst₂ ctx⊢e∶τ zero (Fix ctx⊢e∶τ)) e[μe/0]⤇w
+ go (w , e₁ ∙ e₂) rec (Cat ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) (Cat {w₁ = w₁} {w₂} e₁⤇w₁ e₂⤇w₂ eq) =
+ w₁ , w₂ , w₁∈⟦e₁⟧ , w₂∈⟦e₂⟧ , eq
+ where
+ open _⊛_ τ₁⊛τ₂ using (¬n₁)
+ ε∉⟦e₁⟧ : ¬ Null (⟦ e₁ ⟧ [])
+ ε∉⟦e₁⟧ = ¬n₁ ∘ _⊨_.n⇒n (soundness ctx⊢e₁∶τ₁ [] [])
+
+ w₁∈⟦e₁⟧ = rec (w₁ , e₁) (lex-∙ˡ e₁ e₂ w₁ eq) ctx⊢e₁∶τ₁ e₁⤇w₁
+ w₂∈⟦e₂⟧ = rec (w₂ , e₂) (lex-∙ʳ e₁ e₂ [] ε∉⟦e₁⟧ w₁∈⟦e₁⟧ eq) ctx⊢e₂∶τ₂ e₂⤇w₂
+ go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (Veeˡ e₁⤇w) =
+ inj₁ (rec (w , e₁) (inj₂ (refl , rank-∨ˡ e₁ e₂)) ctx⊢e₁∶τ₁ e₁⤇w)
+ go (w , e₁ ∨ e₂) rec (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) (Veeʳ e₂⤇w) =
+ inj₂ (rec (w , e₂) (inj₂ (refl , rank-∨ʳ e₁ e₂)) ctx⊢e₂∶τ₂ e₂⤇w)