summaryrefslogtreecommitdiff
path: root/src/Cfe/Expression/Base.agda
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-03-27 20:32:03 +0000
committerChloe Brown <chloe.brown.00@outlook.com>2021-03-27 20:32:03 +0000
commitadad5280af0d81a2f171df619e9c7169dcb43a02 (patch)
treec537696feea2aec1688d398bf5fd93e76f72c702 /src/Cfe/Expression/Base.agda
parentc67134fc5cb9e338cb397df029e5528d469771d4 (diff)
Introduce non-terminating proof of derivation existence.
Diffstat (limited to 'src/Cfe/Expression/Base.agda')
-rw-r--r--src/Cfe/Expression/Base.agda9
1 files changed, 9 insertions, 0 deletions
diff --git a/src/Cfe/Expression/Base.agda b/src/Cfe/Expression/Base.agda
index c3367c2..dd9e9b4 100644
--- a/src/Cfe/Expression/Base.agda
+++ b/src/Cfe/Expression/Base.agda
@@ -88,3 +88,12 @@ rotate (μ e) i j i≤j = μ (rotate e (suc i) (suc j) (s≤s i≤j))
_≋_ : {n : ℕ} → Expression n → Expression n → Set (lsuc (c ⊔ ℓ))
e₁ ≋ e₂ = ∀ γ → ⟦ e₁ ⟧ γ 𝕃.≈ ⟦ e₂ ⟧ γ
+
+rank : {n : ℕ} → Expression n → ℕ
+rank ⊥ = 0
+rank ε = 0
+rank (Char _) = 0
+rank (e₁ ∨ e₂) = suc (rank e₁ ℕ.+ rank e₂)
+rank (e₁ ∙ _) = suc (rank e₁)
+rank (Var _) = 0
+rank (μ e) = suc (rank e)