diff options
author | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-29 20:58:04 +0100 |
---|---|---|
committer | Chloe Brown <chloe.brown.00@outlook.com> | 2021-04-29 20:58:04 +0100 |
commit | 8abb1b5601fabf5e7560d08faa6e633e60663e0a (patch) | |
tree | 99e76379b280cc16bc869830ba3a3b89e5c99c12 /src/Cfe/Function | |
parent | 0708355c7988345c98961cad087dc56eeb16ea7f (diff) |
Finally prove that e [ μ e / zero ] ≈ μ e.
Complete proof of generator.
Diffstat (limited to 'src/Cfe/Function')
-rw-r--r-- | src/Cfe/Function/Power.agda | 37 |
1 files changed, 0 insertions, 37 deletions
diff --git a/src/Cfe/Function/Power.agda b/src/Cfe/Function/Power.agda deleted file mode 100644 index da3b335..0000000 --- a/src/Cfe/Function/Power.agda +++ /dev/null @@ -1,37 +0,0 @@ -{-# OPTIONS --without-K --safe #-} - -module Cfe.Function.Power where - -open import Data.Nat using (ℕ) -open import Data.Product using (∃-syntax; _×_) -open import Function using (id; _∘_) -open import Level using (Level; _⊔_) -open import Relation.Binary using (Rel; REL) -open import Relation.Binary.PropositionalEquality using (cong; _≡_) - -private - variable - a : Level - A : Set a - -infix 10 _^_ - ------------------------------------------------------------------------- --- Definition - -_^_ : (A → A) → ℕ → A → A -f ^ ℕ.zero = id -f ^ ℕ.suc n = f ∘ f ^ n - ------------------------------------------------------------------------- --- Properties - -f∼g⇒fⁿ∼gⁿ : - ∀ {a b ℓ} {A : Set a} {B : Set b} (_∼_ : REL A B ℓ) {f g 0A 0B} → - 0A ∼ 0B → (∀ {x y} → x ∼ y → f x ∼ g y) → ∀ n → (f ^ n) 0A ∼ (g ^ n) 0B -f∼g⇒fⁿ∼gⁿ _ refl ext ℕ.zero = refl -f∼g⇒fⁿ∼gⁿ ∼ refl ext (ℕ.suc n) = ext (f∼g⇒fⁿ∼gⁿ ∼ refl ext n) - -fⁿf≡fⁿ⁺¹ : ∀ (f : A → A) n → (f ^ n) ∘ f ≡ f ^ (ℕ.suc n) -fⁿf≡fⁿ⁺¹ f ℕ.zero = _≡_.refl -fⁿf≡fⁿ⁺¹ f (ℕ.suc n) = cong (f ∘_) (fⁿf≡fⁿ⁺¹ f n) |