summaryrefslogtreecommitdiff
path: root/src/Cfe/Judgement/Base.agda
diff options
context:
space:
mode:
authorChloe Brown <chloe.brown.00@outlook.com>2021-03-20 18:36:24 +0000
committerChloe Brown <chloe.brown.00@outlook.com>2021-03-20 18:36:24 +0000
commit4e0ceac75e6d9940f0e11f93a3815448df258c70 (patch)
tree486f5f28796ca2f4996f4caeaf63095d1b4c876c /src/Cfe/Judgement/Base.agda
parent16afd9dff6798509a1d654b0f06e409353e01180 (diff)
Separate Context into a different module.
Diffstat (limited to 'src/Cfe/Judgement/Base.agda')
-rw-r--r--src/Cfe/Judgement/Base.agda124
1 files changed, 5 insertions, 119 deletions
diff --git a/src/Cfe/Judgement/Base.agda b/src/Cfe/Judgement/Base.agda
index 4bb7b67..6b42598 100644
--- a/src/Cfe/Judgement/Base.agda
+++ b/src/Cfe/Judgement/Base.agda
@@ -6,128 +6,14 @@ module Cfe.Judgement.Base
{c ℓ} (over : Setoid c ℓ)
where
-open import Cfe.Expression over hiding (rotate)
+open import Cfe.Context over
+open import Cfe.Expression over
open import Cfe.Type over renaming (_∙_ to _∙ₜ_; _∨_ to _∨ₜ_)
open import Cfe.Type.Construct.Lift over
-open import Data.Empty using (⊥-elim)
open import Data.Fin as F
-open import Data.Fin.Properties hiding (≤-trans)
-open import Data.Nat as ℕ hiding (_⊔_)
-open import Data.Nat.Properties
-open import Data.Product
-open import Data.Vec hiding (_⊛_) renaming (lookup to lookup′)
-open import Function
+open import Data.Nat hiding (_⊔_)
+open import Data.Vec hiding (_⊛_)
open import Level hiding (Lift) renaming (suc to lsuc)
-open import Relation.Binary.PropositionalEquality
-open import Relation.Nullary
-
-private
- insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
- insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
- insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs
- insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x
- insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n)
- insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
-
- reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(toℕ i ≥ m) → Fin (n ∸ m)
- reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
- reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
-
- reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → .(i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
- reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
- reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) i≥m i≤j = reduce≥′-mono (pred-mono m≤n) i j (pred-mono i≥m) (pred-mono i≤j)
-
- remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
- remove′ (x ∷ xs) m≢0 F.zero = xs
- remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
-
- rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
- rotate F.zero j i≤j (x ∷ xs) = insert xs j x
- rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
-
-record Context n : Set (c ⊔ lsuc ℓ) where
- field
- m : ℕ
- m≤n : m ℕ.≤ n
- Γ : Vec (Type ℓ ℓ) (n ∸ m)
- Δ : Vec (Type ℓ ℓ) m
-
- lookup : (i : Fin n) → toℕ i ≥ m → Type ℓ ℓ
- lookup i i≥m = lookup′ Γ (reduce≥′ m≤n i i≥m)
-
-wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ≥ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
-wkn₁ Γ,Δ i i≥m τ = record
- { m≤n = ≤-step m≤n
- ; Γ = subst (Vec (Type ℓ ℓ)) (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
- ; Δ = Δ
- }
- where
- open Context Γ,Δ
-
-wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
-wkn₂ Γ,Δ i i<m τ = record
- { m≤n = s≤s m≤n
- ; Γ = Γ
- ; Δ = insert Δ (fromℕ< (s≤s i<m)) τ
- }
- where
- open Context Γ,Δ
-
-rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → .(i F.≤ j) → Context n
-rotate₁ {n} Γ,Δ i j i≥m i≤j = record
- { m≤n = m≤n
- ; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
- ; Δ = Δ
- }
- where
- open Context Γ,Δ
-
-rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
-rotate₂ {n} Γ,Δ i j j<m i≤j = record
- { m≤n = m≤n
- ; Γ = Γ
- ; Δ = rotate
- (fromℕ< (≤-trans (s≤s i≤j) j<m))
- (fromℕ< j<m)
- (begin
- toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
- toℕ i ≤⟨ i≤j ⟩
- toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
- toℕ (fromℕ< j<m) ∎)
- Δ
- }
- where
- open Context Γ,Δ
- open ≤-Reasoning
-
-transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
-transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
-... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
-... | no m≢0 = record
- { m≤n = pred-mono (≤-step m≤n)
- ; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup′ Δ (fromℕ< i<m))
- ; Δ = remove′ Δ m≢0 (fromℕ< i<m)
- }
- where
- open Context Γ,Δ
-
-cons : ∀ {n} → Type ℓ ℓ → Context n → Context (suc n)
-cons {n} τ Γ,Δ = record
- { m≤n = s≤s m≤n
- ; Γ = Γ
- ; Δ = τ ∷ Δ
- }
- where
- open Context Γ,Δ
-
-shift : ∀ {n} → Context n → Context n
-shift {n} Γ,Δ = record
- { m≤n = z≤n
- ; Γ = subst (Vec (Type ℓ ℓ)) (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
- ; Δ = []
- }
- where
- open Context Γ,Δ
infix 2 _⊢_∶_
@@ -135,7 +21,7 @@ data _⊢_∶_ : {n : ℕ} → Context n → Expression n → Type ℓ ℓ → S
Eps : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ε ∶ Lift ℓ ℓ τε
Char : ∀ {n} {Γ,Δ : Context n} c → Γ,Δ ⊢ Char c ∶ Lift ℓ ℓ τ[ c ]
Bot : ∀ {n} {Γ,Δ : Context n} → Γ,Δ ⊢ ⊥ ∶ Lift ℓ ℓ τ⊥
- Var : ∀ {n} {Γ,Δ : Context n} {i : Fin n} (i≥m : toℕ i ℕ.≥ Context.m Γ,Δ) → Γ,Δ ⊢ Var i ∶ Context.lookup Γ,Δ i i≥m
+ Var : ∀ {n} {Γ,Δ : Context n} {i} (i≥m : toℕ i ≥ _) → Γ,Δ ⊢ Var i ∶ lookup (Context.Γ Γ,Δ) (reduce≥′ (Context.m≤n Γ,Δ) i i≥m)
Fix : ∀ {n} {Γ,Δ : Context n} {e τ} → cons τ Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ μ e ∶ τ
Cat : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → shift Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁⊛τ₂ : τ₁ ⊛ τ₂) → Γ,Δ ⊢ e₁ ∙ e₂ ∶ τ₁ ∙ₜ τ₂
Vee : ∀ {n} {Γ,Δ : Context n} {e₁ e₂ τ₁ τ₂} → Γ,Δ ⊢ e₁ ∶ τ₁ → Γ,Δ ⊢ e₂ ∶ τ₂ → (τ₁#τ₂ : τ₁ # τ₂) → Γ,Δ ⊢ e₁ ∨ e₂ ∶ τ₁ ∨ₜ τ₂