diff options
Diffstat (limited to 'src/Cfe/Context/Properties.agda')
-rw-r--r-- | src/Cfe/Context/Properties.agda | 371 |
1 files changed, 265 insertions, 106 deletions
diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda index 42792d4..b718518 100644 --- a/src/Cfe/Context/Properties.agda +++ b/src/Cfe/Context/Properties.agda @@ -1,122 +1,281 @@ {-# OPTIONS --without-K --safe #-} -open import Relation.Binary using (Setoid; Symmetric; Transitive) +open import Relation.Binary module Cfe.Context.Properties {c ℓ} (over : Setoid c ℓ) where open import Cfe.Context.Base over as C -open import Cfe.Type over -open import Data.Empty -open import Data.Fin as F -open import Data.Nat as ℕ -open import Data.Nat.Properties +open import Cfe.Fin +open import Cfe.Type over using () + renaming + ( _≈_ to _≈ᵗ_ + ; ≈-refl to ≈ᵗ-refl + ; ≈-sym to ≈ᵗ-sym + ; ≈-trans to ≈ᵗ-trans + ; _≤_ to _≤ᵗ_ + ; ≤-refl to ≤ᵗ-refl + ; ≤-reflexive to ≤ᵗ-reflexive + ; ≤-trans to ≤ᵗ-trans + ; ≤-antisym to ≤ᵗ-antisym + ) +open import Data.Fin hiding (pred; _≟_) renaming (_≤_ to _≤ᶠ_) +open import Data.Fin.Properties using (toℕ-inject₁; toℕ<n) + renaming + ( ≤-refl to ≤ᶠ-refl + ; ≤-reflexive to ≤ᶠ-reflexive + ; ≤-trans to ≤ᶠ-trans + ; ≤-antisym to ≤ᶠ-antisym + ) +open import Data.Nat renaming (_≤_ to _≤ⁿ_) +open import Data.Nat.Properties using (module ≤-Reasoning) renaming (≤-reflexive to ≤ⁿ-reflexive) open import Data.Product -open import Data.Vec +open import Data.Vec using ([]; _∷_; Vec; insert) +open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pw using ([]; _∷_; Pointwise) open import Function -open import Relation.Binary.PropositionalEquality +open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) +open import Relation.Nullary.Decidable using (True; toWitness; fromWitness) -≋-sym : ∀ {n} → Symmetric (_≋_ {n}) -≋-sym (refl , refl , refl) = refl , refl , refl +private + variable + n : ℕ -≋-trans : ∀ {n} → Transitive (_≋_ {n}) -≋-trans (refl , refl , refl) (refl , refl , refl) = refl , refl , refl +------------------------------------------------------------------------ +-- Properties for Pointwise +------------------------------------------------------------------------ -i≤j⇒inject₁[i]≤1+j : ∀ {n i j} → i F.≤ j → inject₁ {n} i F.≤ suc j -i≤j⇒inject₁[i]≤1+j {i = zero} i≤j = z≤n -i≤j⇒inject₁[i]≤1+j {i = suc i} {suc j} (s≤s i≤j) = s≤s (i≤j⇒inject₁[i]≤1+j i≤j) + pw-antisym : + ∀ {a b ℓ} {A : Set a} {B : Set b} {P : REL A B ℓ} {Q : REL B A ℓ} {R : REL A B ℓ} {m n} → + Antisym P Q R → Antisym (Pointwise P {m} {n}) (Pointwise Q) (Pointwise R) + pw-antisym antisym [] [] = [] + pw-antisym antisym (x ∷ xs) (y ∷ ys) = antisym x y ∷ pw-antisym antisym xs ys -wkn₂-comm : ∀ {n i j} Γ,Δ i≤j j≤m τ₁ τ₂ → wkn₂ (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ₁) (s≤s j≤m) τ₂ ≋ wkn₂ (wkn₂ {i = j} Γ,Δ j≤m τ₂) (≤-trans (i≤j⇒inject₁[i]≤1+j i≤j) (s≤s j≤m)) τ₁ -wkn₂-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ₁ τ₂ = refl , refl , eq Δ i≤j j≤m τ₁ τ₂ - where - eq : ∀ {a A n m i j} ys (i≤j : i F.≤ j) (j≤m : toℕ {n} j ℕ.≤ m) y₁ y₂ → - insert {a} {A} (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y₁) (fromℕ< (s≤s (s≤s j≤m))) y₂ ≡ - insert (insert ys (fromℕ< (s≤s j≤m)) y₂) (fromℕ< (s≤s (≤-trans (i≤j⇒inject₁[i]≤1+j i≤j) (s≤s j≤m)))) y₁ - eq {i = zero} _ _ _ _ _ = refl - eq {i = suc i} {j = suc j} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y₁ y₂ = cong (x ∷_) (eq ys i≤j j≤m y₁ y₂) - -shift≤-identity : ∀ {n} Γ,Δ → shift≤ {n} Γ,Δ ≤-refl ≋ Γ,Δ -shift≤-identity record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } = refl , eq₁ Γ Δ m≤n , eq₂ Δ - where - eq₁ : ∀ {a A n m} xs ys (m≤n : m ℕ.≤ n) → drop′ {a} {A} m≤n ≤-refl (ys ++ xs) ≡ xs - eq₁ xs [] z≤n = refl - eq₁ xs (_ ∷ ys) (s≤s m≤n) = eq₁ xs ys m≤n + pw-insert : + ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {n} {xs : Vec A n} {ys : Vec B n} → + ∀ i j {i≡j : True (toℕ i ≟ toℕ j)} {x y} → + x ∼ y → Pointwise _∼_ xs ys → Pointwise _∼_ (insert xs i x) (insert ys j y) + pw-insert zero zero x xs = x ∷ xs + pw-insert (suc i) (suc j) {i≡j} x (y ∷ xs) = + y ∷ pw-insert i j {i≡j |> toWitness |> cong pred |> fromWitness} x xs - eq₂ : ∀ {a A m} ys → take′ {a} {A} {m} ≤-refl ys ≡ ys - eq₂ [] = refl - eq₂ (x ∷ ys) = cong (x ∷_) (eq₂ ys) +------------------------------------------------------------------------ +-- Properties of _≈_ +------------------------------------------------------------------------ +-- Relational Properties -shift≤-idem : ∀ {n i j} Γ,Δ i≤j j≤m → shift≤ {n} {i} (shift≤ {i = j} Γ,Δ j≤m) i≤j ≋ shift≤ Γ,Δ (≤-trans i≤j j≤m) -shift≤-idem record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m = refl , eq₁ Γ Δ m≤n i≤j j≤m , eq₂ Δ i≤j j≤m - where - eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) → - drop′ {a} {A} (≤-trans j≤m m≤n) i≤j (take′ j≤m ys ++ drop′ m≤n j≤m (ys ++ xs)) ≡ - drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs) - eq₁ _ _ _ z≤n z≤n = refl - eq₁ xs (y ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) = cong (y ∷_) (eq₁ xs ys m≤n z≤n j≤m) - eq₁ xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) = eq₁ xs ys m≤n i≤j j≤m - - eq₂ : ∀ {a A m i j} ys (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) → take′ {a} {A} i≤j (take′ j≤m ys) ≡ take′ (≤-trans i≤j j≤m) ys - eq₂ ys z≤n j≤m = refl - eq₂ (y ∷ ys) (s≤s i≤j) (s≤s j≤m) = cong (y ∷_) (eq₂ ys i≤j j≤m) - -shift≤-wkn₁-comm : ∀ {n i j} Γ,Δ i≤m j≥m τ → - shift≤ {i = i} (wkn₁ {n} {j} Γ,Δ j≥m τ) i≤m ≋ - wkn₁ (shift≤ Γ,Δ i≤m) (≤-trans i≤m j≥m) τ -shift≤-wkn₁-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m j≥m τ = - refl , eq Γ Δ m≤n i≤m j≥m τ , refl - where - eq : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ {suc n} j ≥ m) y → - drop′ {a} {A} (≤-step m≤n) i≤m (ys ++ (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) j≥m) y)) ≡ - insert′ (drop′ m≤n i≤m (ys ++ xs)) (s≤s (≤-trans i≤m m≤n)) (reduce≥′ (≤-step (≤-trans i≤m m≤n)) (≤-trans i≤m j≥m)) y - eq _ [] z≤n z≤n _ _ = refl - eq {j = suc _} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) y = cong (x ∷_) (eq xs ys m≤n z≤n j≥m y) - eq {j = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) y = eq xs ys m≤n i≤m j≥m y - -shift≤-wkn₂-comm-≤ : ∀ {n i j} Γ,Δ i≤j j≤m τ → - shift≤ {i = i} (wkn₂ {n} {j} Γ,Δ j≤m τ) (≤-trans i≤j (≤-step j≤m)) ≋ - wkn₁ (shift≤ Γ,Δ (≤-trans i≤j j≤m)) i≤j τ -shift≤-wkn₂-comm-≤ record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = - refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ i≤j j≤m τ - where - eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y → - drop′ {a} {A} (s≤s m≤n) (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y ++ xs) ≡ - insert′ - (drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs)) - (s≤s (≤-trans (≤-trans i≤j j≤m) m≤n)) - (reduce≥′ (≤-step (≤-trans (≤-trans i≤j j≤m) m≤n)) i≤j) - y - eq₁ {j = zero} _ _ _ z≤n _ _ = refl - eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) y = cong (x ∷_) (eq₁ xs ys m≤n z≤n j≤m y) - eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y - - eq₂ : ∀ {a A n m i j} ys (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y → - take′ {a} {A} (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y) ≡ - take′ (≤-trans i≤j j≤m) ys - eq₂ {j = zero} _ z≤n _ _ = refl - eq₂ {j = suc _} _ z≤n _ _ = refl - eq₂ {j = suc zero} (_ ∷ _) (s≤s z≤n) (s≤s _) _ = refl - eq₂ {j = suc (suc _)} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys i≤j j≤m y) - -shift≤-wkn₂-comm-> : ∀ {n i j} Γ,Δ i≤j j≤m τ → - shift≤ {i = suc j} (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ) (s≤s j≤m) ≋ - wkn₂ (shift≤ Γ,Δ j≤m) i≤j τ -shift≤-wkn₂-comm-> record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ m≤n i≤j j≤m τ - where - eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y → - drop′ {a} {A} (s≤s m≤n) (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y ++ xs) ≡ - drop′ m≤n j≤m (ys ++ xs) - eq₁ {i = zero} _ _ _ _ _ _ = refl - eq₁ {i = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y - - eq₂ : ∀ {a A n m i j} ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y → - take′ {a} {A} (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y) ≡ - insert (take′ j≤m ys) (fromℕ< (s≤s i≤j)) y - eq₂ {i = zero} _ _ _ _ _ = refl - eq₂ {i = suc _} (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys m≤n i≤j j≤m y) - -shift≤-toVec : ∀ {n i} (Γ,Δ : Context n) (i≤m : i ℕ.≤ _) → toVec (shift≤ Γ,Δ i≤m) ≡ toVec Γ,Δ -shift≤-toVec record { m = .0 ; m≤n = z≤n ; Γ = Γ ; Δ = [] } z≤n = refl -shift≤-toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } z≤n = cong (x ∷_) (shift≤-toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) z≤n) -shift≤-toVec {suc n} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } (s≤s i≤m) = cong (x ∷_) (shift≤-toVec (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ }) i≤m) +≈-refl : Reflexive (_≈_ {n}) +≈-refl = refl , Pw.refl ≈ᵗ-refl + +≈-sym : Symmetric (_≈_ {n}) +≈-sym = map sym (Pw.sym ≈ᵗ-sym) + +≈-trans : Transitive (_≈_ {n}) +≈-trans = zip trans (Pw.trans ≈ᵗ-trans) + +------------------------------------------------------------------------ +-- Structures + +≈-isPartialEquivalence : IsPartialEquivalence (_≈_ {n}) +≈-isPartialEquivalence = record + { sym = ≈-sym + ; trans = ≈-trans + } + +≈-isEquivalence : IsEquivalence (_≈_ {n}) +≈-isEquivalence = record + { refl = ≈-refl + ; sym = ≈-sym + ; trans = ≈-trans + } + +------------------------------------------------------------------------ +-- Bundles + +partialSetoid : ∀ {n} → PartialSetoid _ _ +partialSetoid {n} = record { isPartialEquivalence = ≈-isPartialEquivalence {n} } + +setoid : ∀ {n} → Setoid _ _ +setoid {n} = record { isEquivalence = ≈-isEquivalence {n} } + +------------------------------------------------------------------------ +-- Properties of _≤_ +------------------------------------------------------------------------ + +≤-refl : Reflexive (_≤_ {n}) +≤-refl = ≤ᶠ-refl , Pw.refl ≤ᵗ-refl + +≤-reflexive : (_≈_ {n}) ⇒ _≤_ +≤-reflexive = map (≤ᶠ-reflexive ∘ sym) (Pw.map ≤ᵗ-reflexive) + +≤-trans : Transitive (_≤_ {n}) +≤-trans = zip (flip ≤ᶠ-trans) (Pw.trans ≤ᵗ-trans) + +≤-antisym : Antisymmetric (_≈_ {n}) _≤_ +≤-antisym = zip (sym ∘₂ ≤ᶠ-antisym) (pw-antisym ≤ᵗ-antisym) + +------------------------------------------------------------------------ +-- Structures + +≤-isPreorder : IsPreorder (_≈_ {n}) _≤_ +≤-isPreorder = record + { isEquivalence = ≈-isEquivalence + ; reflexive = ≤-reflexive + ; trans = ≤-trans + } + +≤-isPartialOrder : IsPartialOrder (_≈_ {n}) _≤_ +≤-isPartialOrder = record + { isPreorder = ≤-isPreorder + ; antisym = ≤-antisym + } + +------------------------------------------------------------------------ +-- Bundles + +≤-preorder : ∀ {n} → Preorder _ _ _ +≤-preorder {n} = record { isPreorder = ≤-isPreorder {n} } + +≤-poset : ∀ {n} → Poset _ _ _ +≤-poset {n} = record { isPartialOrder = ≤-isPartialOrder {n} } + +------------------------------------------------------------------------ +-- Properties of wkn₂ +------------------------------------------------------------------------ +-- Algebraic Properties + +wkn₂-mono : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} → + τ₁ ≤ᵗ τ₂ → ctx₁ ≤ ctx₂ → wkn₂ {n} ctx₁ i τ₁ ≤ wkn₂ ctx₂ j τ₂ +wkn₂-mono i j {i≡j} τ₁≤τ₂ (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) = + s≤s g₂≤g₁ , + pw-insert + (inject<! i) (inject<! j) + {i≡j |> toWitness |> inject<!-cong |> cong toℕ |> fromWitness} + τ₁≤τ₂ + Γ,Δ₁≤Γ,Δ₂ + +wkn₂-cong : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} {τ₁ τ₂} → + τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₂ {n} ctx₁ i τ₁ ≈ wkn₂ ctx₂ j τ₂ +wkn₂-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ = + ≤-antisym + (wkn₂-mono i j {i≡j} (≤ᵗ-reflexive τ₁≈τ₂) (≤-reflexive ctx₁≈ctx₂)) + (wkn₂-mono j i + {i≡j |> toWitness |> sym |> fromWitness} + (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂)) + (≤-reflexive (≈-sym ctx₁≈ctx₂))) + +wkn₂-comm : + ∀ ctx i j τ τ′ → + wkn₂ (wkn₂ {n} ctx (inject<!′ {j = suc i} j) τ′) (suc i) τ ≈ wkn₂ (wkn₂ ctx i τ) (inject<′ j) τ′ +wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl +wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ τ′ = + wkn₂-cong zero zero ≈ᵗ-refl (wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) + +------------------------------------------------------------------------ +-- Properties of wkn₁ +------------------------------------------------------------------------ +-- Algebraic Properties + +wkn₁-mono : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → + ∀ {τ₁ τ₂} → τ₁ ≤ᵗ τ₂ → ctx₁ ≤ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≤ wkn₁ ctx₂ j τ₂ +wkn₁-mono {_} {_ ⊐ g₁} {_ ⊐ g₂} i j {i≡j} τ₁≤τ₂ (g₂≤g₁ , Γ,Δ₁≤Γ,Δ₂) = + (begin + toℕ (inject₁ g₂) ≡⟨ toℕ-inject₁ g₂ ⟩ + toℕ g₂ ≤⟨ g₂≤g₁ ⟩ + toℕ g₁ ≡˘⟨ toℕ-inject₁ g₁ ⟩ + toℕ (inject₁ g₁) ∎) , + pw-insert + (raise> i) (raise> j) + {i≡j |> toWitness |> raise>-cong |> cong toℕ |> fromWitness} + τ₁≤τ₂ + Γ,Δ₁≤Γ,Δ₂ + where open ≤-Reasoning + +wkn₁-cong : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ> i ≟ toℕ> j)} → + ∀ {τ₁ τ₂} → τ₁ ≈ᵗ τ₂ → ctx₁ ≈ ctx₂ → wkn₁ {n} ctx₁ i τ₁ ≈ wkn₁ ctx₂ j τ₂ +wkn₁-cong i j {i≡j} τ₁≈τ₂ ctx₁≈ctx₂ = + ≤-antisym + (wkn₁-mono i j {i≡j} (≤ᵗ-reflexive τ₁≈τ₂) (≤-reflexive ctx₁≈ctx₂)) + (wkn₁-mono j i + {i≡j |> toWitness |> sym |> fromWitness} + (≤ᵗ-reflexive (≈ᵗ-sym τ₁≈τ₂)) + (≤-reflexive (≈-sym ctx₁≈ctx₂))) + +wkn₁-comm : + ∀ ctx i j τ τ′ → + let g = guard ctx in + wkn₁ (wkn₁ {n} ctx (inject>!′ {j = suc> i} j) τ′) (suc> i) τ ≈ wkn₁ (wkn₁ ctx i τ) (inject>′ j) τ′ +-- wkn₁-comm = {!!} +wkn₁-comm (Γ,Δ ⊐ zero) zero zero τ τ′ = ≈-refl +wkn₁-comm (Γ,Δ ⊐ zero) (suc i) zero τ τ′ = + wkn₁-cong zero zero ≈ᵗ-refl + (wkn₁-cong (suc> i) (suc i) {toℕ>-suc> i |> fromWitness } ≈ᵗ-refl ≈-refl) +wkn₁-comm (_ ∷ Γ,Δ ⊐ zero) (suc i) (suc j) τ τ′ = + wkn₁-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ zero) i j τ τ′) +wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (inj j) τ τ′ = + wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-comm (Γ,Δ ⊐ g) i j τ τ′) + +wkn₁-wkn₂-comm : + ∀ ctx i j τ τ′ → + wkn₁ (wkn₂ {n} ctx j τ′) (inj i) τ ≈ wkn₂ (wkn₁ ctx i τ) (cast<-inject₁ j) τ′ +wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ τ′ = ≈-refl +wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (inj i) (suc j) τ τ′ = + wkn₂-cong zero zero ≈ᵗ-refl (wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ τ′) + +------------------------------------------------------------------------ +-- Properties of shift +------------------------------------------------------------------------ + +shift-mono : ∀ {ctx₁ ctx₂ i j} → toℕ< j ≤ⁿ toℕ< i → ctx₁ ≤ ctx₂ → shift {n} ctx₁ i ≤ shift ctx₂ j +shift-mono {i = i} {j} j≤i (_ , Γ,Δ₁≤Γ,Δ₂) = + (begin + toℕ (inject<! j) ≡⟨ toℕ<-inject<! j ⟩ + toℕ< j ≤⟨ j≤i ⟩ + toℕ< i ≡˘⟨ toℕ<-inject<! i ⟩ + toℕ (inject<! i) ∎) , + Γ,Δ₁≤Γ,Δ₂ + where open ≤-Reasoning + +shift-cong : + ∀ {ctx₁ ctx₂} i j {i≡j : True (toℕ< i ≟ toℕ< j)} → ctx₁ ≈ ctx₂ → shift {n} ctx₁ i ≈ shift ctx₂ j +shift-cong i j {i≡j} ctx₁≈ctx₂ = + ≤-antisym + (shift-mono (i≡j |> toWitness |> sym |> ≤ⁿ-reflexive) (≤-reflexive ctx₁≈ctx₂)) + (shift-mono (i≡j |> toWitness |> ≤ⁿ-reflexive) (≤-reflexive (≈-sym ctx₁≈ctx₂))) + +shift-identity : ∀ ctx → shift {n} ctx (strengthen< (guard ctx)) ≈ ctx +shift-identity (Γ,Δ ⊐ zero) = ≈-refl +shift-identity (_ ∷ Γ,Δ ⊐ suc g) = wkn₂-cong zero zero ≈ᵗ-refl (shift-identity (Γ,Δ ⊐ g)) + +shift-trans : ∀ ctx i j → shift (shift {n} ctx i) (inject<!′-inject! j) ≈ shift {n} ctx (inject<!′ j) +shift-trans (Γ,Δ ⊐ _) _ zero = ≈-refl +shift-trans (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) = + wkn₂-cong zero zero ≈ᵗ-refl (shift-trans (Γ,Δ ⊐ g) i j) + +shift-wkn₁-comm : + ∀ ctx i j τ → + shift (wkn₁ {n} ctx j τ) (cast<-inject₁ i) ≈ wkn₁ (shift ctx i) (cast>-inject<! i j) τ +shift-wkn₁-comm (Γ,Δ ⊐ zero) zero j τ = + wkn₁-cong j (cast>-inject<! zero j) {toℕ>-cast>-inject<! zero j |> fromWitness} ≈ᵗ-refl ≈-refl +shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) zero (inj j) τ = + wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) zero j τ) +shift-wkn₁-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (inj j) τ = + wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-comm (Γ,Δ ⊐ g) i j τ) + +shift-wkn₂-comm : + ∀ ctx i j τ → + shift (wkn₂ {n} ctx (inject<!′ j) τ) (suc i) ≈ wkn₂ (shift ctx i) (inject<!′-inject! j) τ +shift-wkn₂-comm (Γ,Δ ⊐ g) i zero τ = ≈-refl +shift-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = + wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₂-comm (Γ,Δ ⊐ g) i j τ) + +shift-wkn₁-wkn₂-comm : + ∀ ctx i j τ → + shift (wkn₂ {n} ctx i τ) (inject<′ j) ≈ wkn₁ (shift ctx (inject<!′ j)) (reflect i j) τ +shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) zero zero τ = ≈-refl +shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) zero τ = wkn₁-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i zero τ) +shift-wkn₁-wkn₂-comm (_ ∷ Γ,Δ ⊐ suc g) (suc i) (suc j) τ = wkn₂-cong zero zero ≈ᵗ-refl (shift-wkn₁-wkn₂-comm (Γ,Δ ⊐ g) i j τ) |