summaryrefslogtreecommitdiff
path: root/src/Cfe/Context
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cfe/Context')
-rw-r--r--src/Cfe/Context/Base.agda49
-rw-r--r--src/Cfe/Context/Properties.agda57
2 files changed, 83 insertions, 23 deletions
diff --git a/src/Cfe/Context/Base.agda b/src/Cfe/Context/Base.agda
index 6b7a9dc..1a37aa0 100644
--- a/src/Cfe/Context/Base.agda
+++ b/src/Cfe/Context/Base.agda
@@ -11,40 +11,43 @@ open import Data.Empty
open import Data.Fin as F hiding (cast)
open import Data.Fin.Properties hiding (≤-trans)
open import Data.Nat as ℕ hiding (_⊔_)
-open import Data.Nat.Properties
+open import Data.Nat.Properties as NP
open import Data.Product
open import Data.Vec
open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
+≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n
+≤-recomputable {ℕ.zero} {n} m≤n = z≤n
+≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n))
+
cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n
cast {m = 0} {0} eq [] = []
cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs
-reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → toℕ i ≥ m → Fin (n ∸ m)
+reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m)
reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
-reduce≥′ {suc m} {suc n} m≤n (suc i) (s≤s i≥m) = reduce≥′ (pred-mono m≤n) i i≥m
-
-private
- insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → m ℕ.≤ n → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
- insert′ {a} {A} {ℕ.zero} {n} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
- insert′ {a} {A} {suc ℕ.zero} {suc _} xs _ _ F.zero x = x ∷ xs
- insert′ {a} {A} {suc ℕ.zero} {suc (suc n)} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ {m = suc ℕ.zero} {suc n} xs (s≤s z≤n) (λ ()) i x
- insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) m≤n)
- insert′ {a} {A} {suc (suc m)} {suc (suc n)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
-
- reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
- reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
- reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j
-
- remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
- remove′ (x ∷ xs) m≢0 F.zero = xs
- remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
-
- rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
- rotate F.zero j i≤j (x ∷ xs) = insert xs j x
- rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
+reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
+
+reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
+reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
+reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j
+
+insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
+insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
+insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs
+insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x
+insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n))
+insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
+
+rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
+rotate F.zero j i≤j (x ∷ xs) = insert xs j x
+rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
+
+remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
+remove′ (x ∷ xs) m≢0 F.zero = xs
+remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
record Context n : Set (c ⊔ lsuc ℓ) where
field
diff --git a/src/Cfe/Context/Properties.agda b/src/Cfe/Context/Properties.agda
index 2761fae..230c18b 100644
--- a/src/Cfe/Context/Properties.agda
+++ b/src/Cfe/Context/Properties.agda
@@ -8,6 +8,7 @@ module Cfe.Context.Properties
open import Cfe.Context.Base over as C
open import Cfe.Type over
+open import Data.Empty
open import Data.Fin as F
open import Data.Nat as ℕ
open import Data.Nat.Properties
@@ -23,6 +24,11 @@ cast-involutive : ∀ {a A k m n} .(k≡m : k ≡ m) .(m≡n : m ≡ n) .(k≡n
cast-involutive {k = zero} {zero} {zero} k≡m m≡n k≡n [] = refl
cast-involutive {k = suc _} {suc _} {suc _} k≡m m≡n k≡n (x ∷ xs) = cong (x ∷_) (cast-involutive (cong ℕ.pred k≡m) (cong ℕ.pred m≡n) (cong ℕ.pred k≡n) xs)
+cast-insert : ∀ {a A m n} xs .(m≡n : _) i j .(_ : toℕ i ≡ toℕ j) y → C.cast {a} {A} {suc m} {suc n} (cong suc m≡n) (insert xs i y) ≡ insert (C.cast m≡n xs) j y
+cast-insert [] m≡n zero zero _ y = refl
+cast-insert (x ∷ xs) m≡n zero zero _ y = refl
+cast-insert {m = suc _} {n = suc _} (x ∷ xs) m≡n (suc i) (suc j) i≡j y = cong (x ∷_) (cast-insert xs (cong ℕ.pred m≡n) i j (cong ℕ.pred i≡j) y)
+
wkn₁-shift : ∀ {n} (Γ,Δ : Context n) i i≥m τ → shift (wkn₁ Γ,Δ i i≥m τ) ≋ wkn₁ (shift Γ,Δ) i z≤n τ
wkn₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≥m τ =
refl ,
@@ -62,3 +68,54 @@ wkn₂-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i i≤m τ =
(trans (sym (+-∸-assoc m (pred-mono m≤n))) (m+n∸m≡n m n))
(xs ++ ys)))
eq {m = suc m} {suc n} (x ∷ xs) ys m≤n (suc i) (s≤s i≤m) y = cong (x ∷_) (eq xs ys (pred-mono m≤n) i i≤m y)
+
+rotate₁-shift : ∀ {n} (Γ,Δ : Context n) i j i≥m i≤j → rotate₁ (shift Γ,Δ) i j z≤n i≤j ≋ shift (rotate₁ Γ,Δ i j i≥m i≤j)
+rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i≥m i≤j =
+ refl ,
+ eq Γ Δ m≤n i j i≥m i≤j ,
+ refl
+ where
+ eq : ∀ {a A m n} xs ys .(m≤n : m ℕ.≤ n) i j i≥m i≤j →
+ rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡
+ C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs)
+ eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x)
+ eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j))
+ eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j)
+
+transfer-cons : ∀ {n} (Γ,Δ : Context n) i j i<m 1+j≥m τ → transfer (cons Γ,Δ τ) (suc i) (suc j) (s≤s i<m) (s≤s 1+j≥m) ≋ cons (transfer Γ,Δ i j i<m 1+j≥m) τ
+transfer-cons record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m τ =
+ refl , eq₁ Γ Δ m≤n (fromℕ< i<m) j 1+j≥m τ , eq₂ Δ (fromℕ< i<m) τ
+ where
+ eq₁ : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) (i : Fin (suc m)) j .(1+j≥m : _) y →
+ insert′ {a} {A} xs (s≤s m≤n) (λ ()) (reduce≥′ (≤-step m≤n) (suc j) 1+j≥m) (lookup (y ∷ ys) (suc i)) ≡
+ insert′ xs m≤n (λ ()) (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup ys i)
+ eq₁ {m = zero} {suc _} xs ys m≤n i j 1+j≥m y = refl
+ eq₁ {m = suc m} xs ys m≤n i zero 1+j≥m x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
+ eq₁ {m = suc m} {suc _} xs (x ∷ ys) m≤n i (suc j) 1+j≥m y = refl
+
+ eq₂ : ∀ {a A m} ys (i : Fin (suc m)) y →
+ remove′ {a} {A} (y ∷ ys) (λ ()) (suc i) ≡ y ∷ remove′ ys (λ ()) i
+ eq₂ (x ∷ ys) i y = refl
+
+transfer-shift : ∀ {n} (Γ,Δ : Context n) i j i<m 1+j≥m → rotate₁ (shift Γ,Δ) i j z≤n (pred-mono (≤-trans i<m 1+j≥m)) ≋ shift (transfer Γ,Δ i j i<m 1+j≥m)
+transfer-shift record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m =
+ refl ,
+ eq Γ Δ m≤n i j i<m 1+j≥m ,
+ refl
+ where
+ eq : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) i j i<m .(1+j≥m : _) →
+ rotate {a} {A} i j
+ (pred-mono {_} {suc (toℕ j)} (≤-trans i<m 1+j≥m))
+ (C.cast (trans (sym (+-∸-assoc (suc m) m≤n)) (m+n∸m≡n (suc m) n)) (ys ++ xs)) ≡
+ C.cast
+ (trans (sym (+-∸-assoc m (pred-mono (≤-step m≤n)))) (m+n∸m≡n (suc m) n))
+ ( remove′ ys (λ ()) (fromℕ< i<m) ++
+ insert′ xs m≤n (λ ())
+ (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m))
+ (lookup ys (fromℕ< i<m)))
+ eq {m = zero} {suc _} xs (y ∷ []) m≤n zero zero i<m 1+j≥m = refl
+ eq {m = zero} {suc (suc _)} (x ∷ xs) (y ∷ []) _ zero (suc j) _ _ = cong (x ∷_) (eq xs (y ∷ []) (s≤s z≤n) zero j (s≤s z≤n) (s≤s z≤n))
+ eq {m = zero} {suc _} _ (_ ∷ []) _ (suc _) _ (s≤s ()) _
+ eq {m = suc _} {suc _} _ (_ ∷ _) _ _ zero _ 1+j≥m = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
+ eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n zero (suc j) i<m 1+j≥m = cong (y ∷_) (eq xs (x ∷ ys) (pred-mono m≤n) zero j (s≤s z≤n) (pred-mono 1+j≥m))
+ eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n (suc i) (suc j) (s≤s i<m) 1+j≥m = cong (x ∷_) (eq xs (y ∷ ys) (pred-mono m≤n) i j i<m (pred-mono 1+j≥m))