1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid; Rel)
module Cfe.Context.Base
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F hiding (cast)
open import Data.Fin.Properties hiding (≤-trans)
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Nat.Properties as NP
open import Data.Product
open import Data.Vec
open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
≤-recomputable : ∀ {m n} → .(m ℕ.≤ n) → m ℕ.≤ n
≤-recomputable {ℕ.zero} {n} m≤n = z≤n
≤-recomputable {suc m} {suc n} m≤n = s≤s (≤-recomputable (pred-mono m≤n))
cast : ∀ {a A m n} → .(m ≡ n) → Vec {a} A m → Vec {a} A n
cast {m = 0} {0} eq [] = []
cast {m = suc _} {suc n} eq (x ∷ xs) = x ∷ cast (cong ℕ.pred eq) xs
reduce≥′ : ∀ {m n} → .(m ℕ.≤ n) → (i : Fin n) → .(_ : toℕ i ≥ m) → Fin (n ∸ m)
reduce≥′ {ℕ.zero} {n} m≤n i i≥m = i
reduce≥′ {suc m} {suc n} m≤n (suc i) i≥m = reduce≥′ (pred-mono m≤n) i (pred-mono i≥m)
reduce≥′-mono : ∀ {m n} → .(m≤n : m ℕ.≤ n) → (i j : Fin n) → (i≥m : toℕ i ≥ m) → (i≤j : i F.≤ j) → reduce≥′ m≤n i i≥m F.≤ reduce≥′ m≤n j (≤-trans i≥m i≤j)
reduce≥′-mono {ℕ.zero} {n} m≤n i j i≥m i≤j = i≤j
reduce≥′-mono {suc m} {suc n} m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = reduce≥′-mono (pred-mono m≤n) i j i≥m i≤j
insert′ : ∀ {a A m n} → Vec {a} A (n ∸ m) → .(m ℕ.≤ n) → m ≢ 0 → (i : Fin (n ∸ ℕ.pred m)) → A → Vec A (n ∸ ℕ.pred m)
insert′ {a} {A} {ℕ.zero} xs m≤n m≢0 i x = ⊥-elim (m≢0 refl)
insert′ {a} {A} {suc ℕ.zero} xs _ _ F.zero x = x ∷ xs
insert′ {a} {A} {suc ℕ.zero} (y ∷ xs) _ _ (suc i) x = y ∷ insert′ xs (s≤s z≤n) (λ ()) i x
insert′ {a} {A} {suc (suc m)} {suc ℕ.zero} xs m≤n _ i x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable m≤n))
insert′ {a} {A} {suc (suc m)} {suc (suc _)} xs m≤n _ i x = insert′ {m = suc m} xs (pred-mono m≤n) (λ ()) i x
rotate : ∀ {a A n} → (i j : Fin n) → .(i F.≤ j) → Vec {a} A n → Vec A n
rotate F.zero j i≤j (x ∷ xs) = insert xs j x
rotate (suc i) (suc j) i≤j (x ∷ xs) = x ∷ (rotate i j (pred-mono i≤j) xs)
remove′ : ∀ {a A m} → Vec {a} A m → .(m ≢ 0) → Fin m → Vec A (ℕ.pred m)
remove′ (x ∷ xs) m≢0 F.zero = xs
remove′ (x ∷ y ∷ xs) m≢0 (suc i) = x ∷ remove′ (y ∷ xs) (λ ()) i
record Context n : Set (c ⊔ lsuc ℓ) where
field
m : ℕ
m≤n : m ℕ.≤ n
Γ : Vec (Type ℓ ℓ) (n ∸ m)
Δ : Vec (Type ℓ ℓ) m
wkn₁ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → (toℕ i ≥ Context.m Γ,Δ) → Type ℓ ℓ → Context (suc n)
wkn₁ Γ,Δ i i≥m τ = record
{ m≤n = ≤-step m≤n
; Γ = cast (sym (+-∸-assoc 1 m≤n)) (insert Γ (F.cast (+-∸-assoc 1 m≤n) (reduce≥′ (≤-step m≤n) i i≥m)) τ)
; Δ = Δ
}
where
open Context Γ,Δ
wkn₂ : ∀ {n} → (Γ,Δ : Context n) → (i : Fin (suc n)) → toℕ i ℕ.≤ Context.m Γ,Δ → Type ℓ ℓ → Context (suc n)
wkn₂ Γ,Δ i i≤m τ = record
{ m≤n = s≤s m≤n
; Γ = Γ
; Δ = insert Δ (fromℕ< (s≤s i≤m)) τ
}
where
open Context Γ,Δ
rotate₁ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → toℕ i ≥ Context.m Γ,Δ → (i F.≤ j) → Context n
rotate₁ {n} Γ,Δ i j i≥m i≤j = record
{ m≤n = m≤n
; Γ = rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) Γ
; Δ = Δ
}
where
open Context Γ,Δ
rotate₂ : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ j ℕ.< Context.m Γ,Δ) → (i F.≤ j) → Context n
rotate₂ {n} Γ,Δ i j j<m i≤j = record
{ m≤n = m≤n
; Γ = Γ
; Δ = rotate
(fromℕ< (≤-trans (s≤s i≤j) j<m))
(fromℕ< j<m)
(begin
toℕ (fromℕ< (≤-trans (s≤s i≤j) j<m)) ≡⟨ toℕ-fromℕ< (≤-trans (s≤s i≤j) j<m) ⟩
toℕ i ≤⟨ i≤j ⟩
toℕ j ≡˘⟨ toℕ-fromℕ< j<m ⟩
toℕ (fromℕ< j<m) ∎)
Δ
}
where
open Context Γ,Δ
open ≤-Reasoning
transfer : ∀ {n} → (Γ,Δ : Context n) → (i j : Fin n) → (toℕ i ℕ.< Context.m Γ,Δ) → (suc (toℕ j) ≥ Context.m Γ,Δ) → Context n
transfer {n} Γ,Δ i j i<m 1+j≥m with Context.m Γ,Δ ℕ.≟ 0
... | yes m≡0 = ⊥-elim (m<n⇒n≢0 i<m m≡0)
... | no m≢0 = record
{ m≤n = pred-mono (≤-step m≤n)
; Γ = insert′ Γ m≤n m≢0 (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m)) (lookup Δ (fromℕ< i<m))
; Δ = remove′ Δ m≢0 (fromℕ< i<m)
}
where
open Context Γ,Δ
cons : ∀ {n} → Context n → Type ℓ ℓ → Context (suc n)
cons {n} Γ,Δ τ = record
{ m≤n = s≤s m≤n
; Γ = Γ
; Δ = τ ∷ Δ
}
where
open Context Γ,Δ
shift : ∀ {n} → Context n → Context n
shift {n} Γ,Δ = record
{ m≤n = z≤n
; Γ = cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (Δ ++ Γ)
; Δ = []
}
where
open Context Γ,Δ
_≋_ : ∀ {n} → Rel (Context n) (c ⊔ lsuc ℓ)
Γ,Δ ≋ Γ,Δ′ = Σ (Context.m Γ,Δ ≡ Context.m Γ,Δ′) λ {refl → Context.Γ Γ,Δ ≡ Context.Γ Γ,Δ′ × Context.Δ Γ,Δ ≡ Context.Δ Γ,Δ′}
|