summaryrefslogtreecommitdiff
path: root/src/Cfe/Fin
diff options
context:
space:
mode:
Diffstat (limited to 'src/Cfe/Fin')
-rw-r--r--src/Cfe/Fin/Base.agda162
-rw-r--r--src/Cfe/Fin/Properties.agda252
2 files changed, 339 insertions, 75 deletions
diff --git a/src/Cfe/Fin/Base.agda b/src/Cfe/Fin/Base.agda
index 9a0a4aa..f357048 100644
--- a/src/Cfe/Fin/Base.agda
+++ b/src/Cfe/Fin/Base.agda
@@ -2,29 +2,33 @@
module Cfe.Fin.Base where
-open import Data.Nat using (ℕ; zero; suc)
-open import Data.Fin using (Fin; Fin′; zero; suc; inject₁)
+open import Data.Empty using (⊥-elim)
+open import Data.Nat using (ℕ; zero; suc; pred; z≤n)
+open import Data.Nat.Properties using (pred-mono)
+open import Data.Fin using (Fin; zero; suc; toℕ; inject₁; _≤_)
+open import Function using (_∘_)
+open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong)
data Fin< : ∀ {n} → Fin n → Set where
zero : ∀ {n i} → Fin< {suc n} (suc i)
suc : ∀ {n i} → Fin< {n} i → Fin< (suc i)
-data Fin<′ : ∀ {n i} → Fin< {n} i → Set where
- zero : ∀ {n i j} → Fin<′ {suc n} {suc i} (suc j)
- suc : ∀ {n i j} → Fin<′ {n} {i} j → Fin<′ (suc j)
-
--- Fin> {n} zero ≡ Fin n
--- Fin> (suc i) ≡ Fin> i
+data Fin<< : ∀ {n i} → Fin< {n} i → Set where
+ zero : ∀ {n i j} → Fin<< {suc n} {suc i} (suc j)
+ suc : ∀ {n i j} → Fin<< {n} {i} j → Fin<< (suc j)
data Fin> : ∀ {n} → Fin n → Set where
- zero : ∀ {n} → Fin> {suc n} zero
+ zero : ∀ {n} → Fin> {suc (suc n)} zero
suc : ∀ {n} → Fin> {suc n} zero → Fin> {suc (suc n)} zero
inj : ∀ {n i} → Fin> {n} i → Fin> (suc i)
-data Fin>′ : ∀ {n i} → Fin> {n} i → Set where
- zero : ∀ {n j} → Fin>′ {suc (suc n)} {zero} (suc j)
- suc : ∀ {n j} → Fin>′ {suc n} {zero} j → Fin>′ (suc j)
- inj : ∀ {n i j} → Fin>′ {n} {i} j → Fin>′ (inj j)
+data Fin>< : ∀ {n i} → Fin> {n} i → Set where
+ zero : ∀ {n j} → Fin>< {suc (suc n)} {zero} (suc j)
+ suc : ∀ {n j} → Fin>< {suc n} {zero} j → Fin>< (suc j)
+ inj : ∀ {n i j} → Fin>< {n} {i} j → Fin>< (inj j)
+
+------------------------------------------------------------------------
+-- Coversions to ℕ
toℕ< : ∀ {n i} → Fin< {n} i → ℕ
toℕ< zero = 0
@@ -35,58 +39,118 @@ toℕ> zero = 0
toℕ> (suc j) = suc (toℕ> j)
toℕ> (inj j) = suc (toℕ> j)
+------------------------------------------------------------------------
+-- Upwards injections
+
+inject!< : ∀ {n i} → Fin< {suc n} i → Fin n
+inject!< {suc _} zero = zero
+inject!< {suc _} (suc j) = suc (inject!< j)
+
+inject< : ∀ {n i} → Fin< {n} i → Fin n
+inject< zero = zero
+inject< (suc j) = suc (inject< j)
+
+inject₁< : ∀ {n i} → Fin< {n} i → Fin< (suc i)
+inject₁< zero = zero
+inject₁< (suc j) = suc (inject₁< j)
+
+inject!<< : ∀ {n i j} → Fin<< {suc n} {suc i} j → Fin< i
+inject!<< {suc _} {suc _} zero = zero
+inject!<< {suc _} {suc _} (suc k) = suc (inject!<< k)
+
+inject<< : ∀ {n i j} → Fin<< {n} {i} j → Fin< i
+inject<< zero = zero
+inject<< (suc k) = suc (inject<< k)
+
+inject!>< : ∀ {n i j} → Fin>< {suc n} {inject₁ i} j → Fin> i
+inject!>< {suc (suc _)} {zero} {suc j} zero = zero
+inject!>< {suc (suc _)} {zero} {suc j} (suc k) = suc (inject!>< k)
+inject!>< {suc (suc _)} {suc _} {inj j} (inj k) = inj (inject!>< k)
+
+inject>< : ∀ {n i j} → Fin>< {n} {i} j → Fin> {n} i
+inject>< zero = zero
+inject>< (suc k) = suc (inject>< k)
+inject>< (inj k) = inj (inject>< k)
+
+------------------------------------------------------------------------
+-- Downwards injections
+
strengthen< : ∀ {n} → (i : Fin n) → Fin< (suc i)
strengthen< zero = zero
strengthen< (suc i) = suc (strengthen< i)
-inject<! : ∀ {n i} → Fin< {suc n} i → Fin n
-inject<! {suc _} zero = zero
-inject<! {suc _} (suc j) = suc (inject<! j)
+------------------------------------------------------------------------
+-- Casts
-cast<-inject₁ : ∀ {n i} → Fin< {n} i → Fin< (inject₁ i)
-cast<-inject₁ zero = zero
-cast<-inject₁ (suc j) = suc (cast<-inject₁ j)
+cast< : ∀ {m n i j} → .(toℕ i ≡ toℕ j) → Fin< {m} i → Fin< {n} j
+cast< {i = suc _} {suc _} _ zero = zero
+cast< {i = suc _} {suc _} i≡j (suc k) = suc (cast< (cong pred i≡j) k)
-inject<!′ : ∀ {n i j} → Fin<′ {suc n} {suc i} j → Fin< i
-inject<!′ {suc _} {suc _} zero = zero
-inject<!′ {suc _} {suc _} (suc k) = suc (inject<!′ k)
+cast<< : ∀ {m n i j k l} → .(toℕ< k ≡ toℕ< l) → Fin<< {m} {i} k → Fin<< {n} {j} l
+cast<< {k = suc _} {suc _} _ zero = zero
+cast<< {k = suc _} {suc _} k≡l (suc x) = suc (cast<< (cong pred k≡l) x)
-inject<′ : ∀ {n i j} → Fin<′ {n} {i} j → Fin< i
-inject<′ zero = zero
-inject<′ (suc k) = suc (inject<′ k)
+cast> : ∀ {n i j} → .(j ≤ i) → Fin> {n} i → Fin> j
+cast> {_} {zero} {zero} j≤i zero = zero
+cast> {_} {zero} {zero} j≤i (suc k) = suc (cast> j≤i k)
+cast> {suc (suc _)} {suc i} {zero} j≤i (inj k) = suc (cast> z≤n k)
+cast> {suc (suc _)} {suc i} {suc j} j≤i (inj k) = inj (cast> (pred-mono j≤i) k)
-inject<!′-inject! : ∀ {n i j} → Fin<′ {suc n} {i} j → Fin< (inject<! j)
-inject<!′-inject! {suc n} {_} {suc j} zero = zero
-inject<!′-inject! {suc n} {_} {suc j} (suc k) = suc (inject<!′-inject! k)
+------------------------------------------------------------------------
+-- Additions
-raise> : ∀ {n i} → Fin> {n} i → Fin n
-raise> {suc _} zero = zero
-raise> {suc _} (suc j) = suc (raise> j)
-raise> {suc _} (inj j) = suc (raise> j)
+raise!> : ∀ {n i} → Fin> {suc n} i → Fin n
+raise!> {suc _} zero = zero
+raise!> {suc _} (suc j) = suc (raise!> j)
+raise!> {suc _} (inj j) = suc (raise!> j)
suc> : ∀ {n i} → Fin> {n} i → Fin> (inject₁ i)
suc> zero = suc zero
suc> (suc j) = suc (suc> j)
suc> (inj j) = inj (suc> j)
-inject>!′ : ∀ {n i j} → Fin>′ {suc n} {inject₁ i} j → Fin> {n} i
-inject>!′ {suc _} {zero} zero = zero
-inject>!′ {suc (suc _)} {zero} {suc _} (suc k) = suc (inject>!′ k)
-inject>!′ {suc _} {suc i} (inj k) = inj (inject>!′ k)
+------------------------------------------------------------------------
+-- Operations on the index
+
+-- predⁱ< {i = "i"} _ = "pred i"
+
+predⁱ< : ∀ {n i} → Fin< {suc n} i → Fin n
+predⁱ< {i = suc i} _ = i
+
+-- inject₁ⁱ> {i = "i"} _ = "i"
+
+inject₁ⁱ> : ∀ {n i} → Fin> {suc n} i → Fin n
+inject₁ⁱ> zero = zero
+inject₁ⁱ> (suc _) = zero
+inject₁ⁱ> {suc _} (inj j) = suc (inject₁ⁱ> j)
+
+------------------------------------------------------------------------
+-- Operations
+
+punchIn> : ∀ {n i} → Fin> {suc n} (inject₁ i) → Fin> i → Fin> (inject₁ i)
+punchIn> {i = zero} zero k = suc k
+punchIn> {i = zero} (suc j) zero = zero
+punchIn> {i = zero} (suc j) (suc k) = suc (punchIn> j k)
+punchIn> {i = suc _} (inj j) (inj k) = inj (punchIn> j k)
+
+punchOut> : ∀ {n i j k} → raise!> {n} {i} j ≢ raise!> {n} {i} k → Fin> (inject₁ⁱ> j)
+punchOut> {j = zero} {zero} j≢k = ⊥-elim (j≢k refl)
+punchOut> {j = zero} {suc k} j≢k = k
+punchOut> {suc (suc _)} {j = suc j} {zero} j≢k = zero
+punchOut> {suc (suc _)} {j = suc zero} {suc k} j≢k = suc (punchOut> (j≢k ∘ cong suc))
+punchOut> {suc (suc _)} {j = suc (suc j)} {suc k} j≢k = suc (punchOut> {j = suc j} (j≢k ∘ cong suc))
+punchOut> {suc _} {j = inj j} {inj k} j≢k = inj (punchOut> (j≢k ∘ cong suc))
-inject>′ : ∀ {n i j} → Fin>′ {n} {i} j → Fin> {n} i
-inject>′ zero = zero
-inject>′ (suc k) = suc (inject>′ k)
-inject>′ (inj k) = inj (inject>′ k)
+-- reflect "j" _ ≡ "j"
-cast>-inject<! : ∀ {n i} (j : Fin< (suc i)) → Fin> {suc n} i → Fin> (inject<! j)
-cast>-inject<! zero zero = zero
-cast>-inject<! zero (suc k) = suc (cast>-inject<! zero k)
-cast>-inject<! {suc n} zero (inj k) = suc (cast>-inject<! zero k)
-cast>-inject<! {suc n} (suc j) (inj k) = inj (cast>-inject<! j k)
+reflect! :
+ ∀ {n i} → (j : Fin< (suc {n} i)) → (k : Fin<< (suc j)) → Fin> (inject₁ (inject!< (inject!<< k)))
+reflect! {suc _} zero zero = zero
+reflect! {suc (suc _)} {suc _} (suc j) zero = suc (reflect! j zero)
+reflect! {suc (suc _)} {suc _} (suc j) (suc k) = inj (reflect! j k)
reflect :
- ∀ {n i} → (j : Fin< {suc (suc n)} (suc i)) → (k : Fin<′ (suc j)) → Fin> (inject<! (inject<!′ k))
-reflect zero zero = zero
-reflect {suc n} {suc i} (suc j) zero = suc (reflect j zero)
-reflect {suc n} {suc i} (suc j) (suc k) = inj (reflect j k)
+ ∀ {n i} → (j : Fin< {n} i) → (k : Fin<< (suc j)) → Fin> (inject< (inject!<< k))
+reflect {suc (suc n)} zero zero = zero
+reflect {_} {suc (suc _)} (suc j) zero = suc (reflect j zero)
+reflect {_} {suc (suc _)} (suc j) (suc k) = inj (reflect j k)
diff --git a/src/Cfe/Fin/Properties.agda b/src/Cfe/Fin/Properties.agda
index 56a2c77..c07aa56 100644
--- a/src/Cfe/Fin/Properties.agda
+++ b/src/Cfe/Fin/Properties.agda
@@ -3,31 +3,231 @@
module Cfe.Fin.Properties where
open import Cfe.Fin.Base
-open import Data.Fin using (zero; suc; toℕ)
-open import Data.Nat using (suc; pred)
+open import Data.Empty using (⊥-elim)
+open import Data.Fin using (zero; suc; toℕ; punchIn; punchOut; inject₁)
+open import Data.Nat using (suc; pred; _≤_; _<_; _≥_; z≤n; s≤s)
+open import Data.Nat.Properties using (suc-injective; pred-mono; module ≤-Reasoning)
+open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
-inject<!-cong : ∀ {n i j k l} → toℕ< {i = i} k ≡ toℕ< {i = j} l → inject<! {n} k ≡ inject<! l
-inject<!-cong {suc _} {k = zero} {zero} _ = refl
-inject<!-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (inject<!-cong (cong pred k≡l))
-
-raise>-cong : ∀ {n i j k l} → toℕ> {i = i} k ≡ toℕ> {i = j} l → raise> {n} k ≡ raise> l
-raise>-cong {suc _} {k = zero} {zero} _ = refl
-raise>-cong {suc _} {k = suc k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l))
-raise>-cong {suc _} {k = suc k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l))
-raise>-cong {suc _} {k = inj k} {suc l} k≡l = cong suc (raise>-cong (cong pred k≡l))
-raise>-cong {suc _} {k = inj k} {inj l} k≡l = cong suc (raise>-cong (cong pred k≡l))
-
-toℕ>-suc> : ∀ {n} j → toℕ> (suc> {suc n} j) ≡ toℕ> (suc j)
-toℕ>-suc> zero = refl
-toℕ>-suc> (suc j) = cong suc (toℕ>-suc> j)
-
-toℕ<-inject<! : ∀ {n i} j → toℕ (inject<! {n} {i} j) ≡ toℕ< j
-toℕ<-inject<! {suc n} zero = refl
-toℕ<-inject<! {suc n} (suc j) = cong suc (toℕ<-inject<! j)
-
-toℕ>-cast>-inject<! : ∀ {n i} j k → toℕ> k ≡ toℕ> (cast>-inject<! {n} {i} j k)
-toℕ>-cast>-inject<! zero zero = refl
-toℕ>-cast>-inject<! zero (suc k) = cong suc (toℕ>-cast>-inject<! zero k)
-toℕ>-cast>-inject<! {suc n} zero (inj k) = cong suc (toℕ>-cast>-inject<! zero k)
-toℕ>-cast>-inject<! {suc n} (suc j) (inj k) = cong suc (toℕ>-cast>-inject<! j k)
+------------------------------------------------------------------------
+-- Properties missing from Data.Fin.Properties
+------------------------------------------------------------------------
+
+inject₁-mono : ∀ {n i j} → toℕ {n} i ≤ toℕ {n} j → toℕ (inject₁ i) ≤ toℕ (inject₁ j)
+inject₁-mono {i = zero} i≤j = z≤n
+inject₁-mono {i = suc i} {suc j} (s≤s i≤j) = s≤s (inject₁-mono i≤j)
+
+------------------------------------------------------------------------
+-- Properties of toℕ<
+------------------------------------------------------------------------
+
+toℕ<<i : ∀ {n i} j → toℕ< {n} {i} j < toℕ i
+toℕ<<i zero = s≤s z≤n
+toℕ<<i (suc j) = s≤s (toℕ<<i j)
+
+------------------------------------------------------------------------
+-- Properties of toℕ>
+
+toℕ>≥i : ∀ {n i} j → toℕ> {n} {i} j ≥ toℕ i
+toℕ>≥i zero = z≤n
+toℕ>≥i (suc j) = z≤n
+toℕ>≥i (inj j) = s≤s (toℕ>≥i j)
+
+------------------------------------------------------------------------
+-- Properties of inject!<
+------------------------------------------------------------------------
+
+toℕ-inject!< : ∀ {n i} j → toℕ (inject!< {n} {i} j) ≡ toℕ< j
+toℕ-inject!< {suc _} zero = refl
+toℕ-inject!< {suc _} (suc j) = cong suc (toℕ-inject!< j)
+
+inject!<-mono :
+ ∀ {m n i j k l} → toℕ< k ≤ toℕ< l → toℕ (inject!< {m} {i} k) ≤ toℕ (inject!< {n} {j} l)
+inject!<-mono {k = k} {l} k≤l = begin
+ toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩
+ toℕ< k ≤⟨ k≤l ⟩
+ toℕ< l ≡˘⟨ toℕ-inject!< l ⟩
+ toℕ (inject!< l) ∎
+ where open ≤-Reasoning
+
+inject!<-cong :
+ ∀ {m n i j k l} → toℕ< k ≡ toℕ< l → toℕ (inject!< {m} {i} k) ≡ toℕ (inject!< {n} {j} l)
+inject!<-cong {k = k} {l} k≡l = begin
+ toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩
+ toℕ< k ≡⟨ k≡l ⟩
+ toℕ< l ≡˘⟨ toℕ-inject!< l ⟩
+ toℕ (inject!< l) ∎
+ where open ≡-Reasoning
+
+------------------------------------------------------------------------
+-- Properties of inject*<*
+------------------------------------------------------------------------
+
+inject-square : ∀ {n i j} k → inject< (inject!<< {n} {i} {j} k) ≡ inject!< (inject<< k)
+inject-square {suc n} {suc i} zero = refl
+inject-square {suc n} {suc i} (suc k) = cong suc (inject-square k)
+
+------------------------------------------------------------------------
+-- Properties of strengthen<
+------------------------------------------------------------------------
+
+toℕ-strengthen< : ∀ {n} i → toℕ< (strengthen< {n} i) ≡ toℕ i
+toℕ-strengthen< zero = refl
+toℕ-strengthen< (suc i) = cong suc (toℕ-strengthen< i)
+
+strengthen<-inject!< : ∀ {n i} j → toℕ< (strengthen< (inject!< {n} {i} j)) ≡ toℕ< j
+strengthen<-inject!< {suc _} zero = refl
+strengthen<-inject!< {suc _} (suc j) = cong suc (strengthen<-inject!< j)
+
+------------------------------------------------------------------------
+-- Properties of cast<
+------------------------------------------------------------------------
+
+toℕ-cast< : ∀ {m n i j} i≡j k → toℕ< (cast< {m} {n} {i} {j} i≡j k) ≡ toℕ< k
+toℕ-cast< {i = suc _} {suc _} i≡j zero = refl
+toℕ-cast< {i = suc _} {suc _} i≡j (suc k) = cong suc (toℕ-cast< (cong pred i≡j) k)
+
+------------------------------------------------------------------------
+-- Properties of cast>
+------------------------------------------------------------------------
+
+toℕ-cast> : ∀ {n i j} j≤i k → toℕ> (cast> {n} {i} {j} j≤i k) ≡ toℕ> k
+toℕ-cast> {_} {zero} {zero} j≤i zero = refl
+toℕ-cast> {_} {zero} {zero} j≤i (suc k) = cong suc (toℕ-cast> j≤i k)
+toℕ-cast> {suc (suc n)} {suc i} {zero} j≤i (inj k) = cong suc (toℕ-cast> z≤n k)
+toℕ-cast> {suc (suc n)} {suc i} {suc j} j≤i (inj k) = cong suc (toℕ-cast> (pred-mono j≤i) k)
+
+------------------------------------------------------------------------
+-- Properties of raise!>
+------------------------------------------------------------------------
+
+toℕ-raise!> : ∀ {n i} j → toℕ (raise!> {n} {i} j) ≡ toℕ> j
+toℕ-raise!> zero = refl
+toℕ-raise!> (suc j) = cong suc (toℕ-raise!> j)
+toℕ-raise!> {suc n} (inj j) = cong suc (toℕ-raise!> j)
+
+raise!>-cong : ∀ {m n i j k l} → toℕ> k ≡ toℕ> l → toℕ (raise!> {m} {i} k) ≡ toℕ (raise!> {n} {j} l)
+raise!>-cong {k = k} {l} k≡l = begin
+ toℕ (raise!> k) ≡⟨ toℕ-raise!> k ⟩
+ toℕ> k ≡⟨ k≡l ⟩
+ toℕ> l ≡˘⟨ toℕ-raise!> l ⟩
+ toℕ (raise!> l) ∎
+ where open ≡-Reasoning
+
+------------------------------------------------------------------------
+-- Properties of suc>
+------------------------------------------------------------------------
+
+toℕ-suc> : ∀ {n i} j → toℕ> (suc> {n} {i} j) ≡ suc (toℕ> j)
+toℕ-suc> zero = refl
+toℕ-suc> (suc j) = cong suc (toℕ-suc> j)
+toℕ-suc> (inj j) = cong suc (toℕ-suc> j)
+
+------------------------------------------------------------------------
+-- Properties of predⁱ<
+------------------------------------------------------------------------
+
+toℕ-predⁱ< : ∀ {n i} j → suc (toℕ (predⁱ< {n} {i} j)) ≡ toℕ i
+toℕ-predⁱ< {i = suc _} _ = refl
+
+predⁱ<-mono :
+ ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (predⁱ< {n} {i} k) ≤ toℕ (predⁱ< {n} {j} l)
+predⁱ<-mono {i = i} {j} k l i≤j = pred-mono (begin
+ suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩
+ toℕ i ≤⟨ i≤j ⟩
+ toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩
+ suc (toℕ (predⁱ< l)) ∎)
+ where open ≤-Reasoning
+
+predⁱ<-cong :
+ ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (predⁱ< {n} {i} k) ≡ toℕ (predⁱ< {n} {j} l)
+predⁱ<-cong {i = i} {j} k l i≡j = suc-injective (begin
+ suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩
+ toℕ i ≡⟨ i≡j ⟩
+ toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩
+ suc (toℕ (predⁱ< l)) ∎)
+ where open ≡-Reasoning
+
+------------------------------------------------------------------------
+-- Properties of inject₁ⁱ>
+------------------------------------------------------------------------
+
+toℕ-inject₁ⁱ> : ∀ {n i} j → toℕ (inject₁ⁱ> {n} {i} j) ≡ toℕ i
+toℕ-inject₁ⁱ> {suc _} zero = refl
+toℕ-inject₁ⁱ> {suc _} (suc k) = refl
+toℕ-inject₁ⁱ> {suc _} (inj k) = cong suc (toℕ-inject₁ⁱ> k)
+
+inject₁ⁱ>-mono :
+ ∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≤ toℕ (inject₁ⁱ> {n} {j} l)
+inject₁ⁱ>-mono {i = i} {j} k l i≤j = begin
+ toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩
+ toℕ i ≤⟨ i≤j ⟩
+ toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩
+ toℕ (inject₁ⁱ> l) ∎
+ where open ≤-Reasoning
+
+inject₁ⁱ>-cong :
+ ∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≡ toℕ (inject₁ⁱ> {n} {j} l)
+inject₁ⁱ>-cong {i = i} {j} k l i≡j = begin
+ toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩
+ toℕ i ≡⟨ i≡j ⟩
+ toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩
+ toℕ (inject₁ⁱ> l) ∎
+ where open ≡-Reasoning
+
+------------------------------------------------------------------------
+-- Properties of punchIn>
+------------------------------------------------------------------------
+
+toℕ-punchIn> : ∀ {n i} j k → toℕ> (punchIn> {suc n} {i} j k) ≡ toℕ (punchIn (raise!> j) (raise!> k))
+toℕ-punchIn> {_} {zero} zero k = sym (cong suc (toℕ-raise!> k))
+toℕ-punchIn> {_} {zero} (suc j) zero = refl
+toℕ-punchIn> {_} {zero} (suc j) (suc k) = cong suc (toℕ-punchIn> j k)
+toℕ-punchIn> {suc _} {suc i} (inj j) (inj k) = cong suc (toℕ-punchIn> j k)
+
+------------------------------------------------------------------------
+-- Properties of punchOut>
+------------------------------------------------------------------------
+
+toℕ-punchOut> : ∀ {n i j k} j≢k → toℕ> (punchOut> {suc n} {i} {j} {k} j≢k) ≡ toℕ (punchOut j≢k)
+toℕ-punchOut> {_} {_} {zero} {zero} j≢k = ⊥-elim (j≢k refl)
+toℕ-punchOut> {_} {_} {zero} {suc k} j≢k = sym (toℕ-raise!> k)
+toℕ-punchOut> {suc _} {_} {suc j} {zero} j≢k = refl
+toℕ-punchOut> {suc _} {_} {suc zero} {suc k} j≢k =
+ cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
+toℕ-punchOut> {suc _} {_} {suc (suc j)} {suc k} j≢k =
+ cong suc (toℕ-punchOut> {j = suc j} (j≢k ∘ cong suc))
+toℕ-punchOut> {suc _} {suc zero} {inj j} {inj k} j≢k =
+ cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
+toℕ-punchOut> {suc _} {suc (suc _)} {inj j} {inj k} j≢k =
+ cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
+
+------------------------------------------------------------------------
+-- Properties of reflect!
+------------------------------------------------------------------------
+
+toℕ-reflect! : ∀ {n i} j k → toℕ> (reflect! {n} {i} j k) ≡ toℕ< j
+toℕ-reflect! {suc _} zero zero = refl
+toℕ-reflect! {suc (suc _)} {suc _} (suc j) zero = cong suc (toℕ-reflect! j zero)
+toℕ-reflect! {suc (suc _)} {suc _} (suc j) (suc k) = cong suc (toℕ-reflect! j k)
+
+------------------------------------------------------------------------
+-- Properties of reflect
+------------------------------------------------------------------------
+
+toℕ-reflect : ∀ {n i} j k → toℕ> (reflect {n} {i} j k) ≡ toℕ< j
+toℕ-reflect {suc (suc _)} zero zero = refl
+toℕ-reflect {_} {suc (suc _)} (suc j) zero = cong suc (toℕ-reflect j zero)
+toℕ-reflect {_} {suc (suc _)} (suc j) (suc k) = cong suc (toℕ-reflect j k)
+
+------------------------------------------------------------------------
+-- Other properties
+------------------------------------------------------------------------
+
+inj-punchOut :
+ ∀ {n i j k} → (j≢k : inject!< {suc n} {suc i} j ≢ raise!> (inj {suc n} {i} k)) →
+ toℕ (punchOut j≢k) ≡ toℕ> k
+inj-punchOut {j = zero} {k} j≢k = toℕ-raise!> k
+inj-punchOut {suc n} {j = suc j} {inj k} j≢k = cong suc (inj-punchOut (j≢k ∘ cong suc))
+