summaryrefslogtreecommitdiff
path: root/src/Cfe/Context/Properties.agda
blob: 11441a74320cff071ac5cd0d5332641cebf4876c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{-# OPTIONS --without-K --safe #-}

open import Relation.Binary using (Setoid; Symmetric; Transitive)

module Cfe.Context.Properties
  {c ℓ} (over : Setoid c ℓ)
  where

open import Cfe.Context.Base over as C
open import Cfe.Type over
open import Data.Empty
open import Data.Fin as F
open import Data.Nat as ℕ
open import Data.Nat.Properties
open import Data.Product
open import Data.Vec
open import Function
open import Relation.Binary.PropositionalEquality

≋-sym : ∀ {n} → Symmetric (_≋_ {n})
≋-sym (refl , refl , refl) = refl , refl , refl

≋-trans : ∀ {n} → Transitive (_≋_ {n})
≋-trans (refl , refl , refl) (refl , refl , refl) = refl , refl , refl

shift≤-wkn₁-comm : ∀ {n i j} Γ,Δ i≤m j≥m τ →
                   shift≤ {i = i} (wkn₁ {n} {j} Γ,Δ j≥m τ) i≤m ≋
                   wkn₁ (shift≤ Γ,Δ i≤m) (≤-trans i≤m j≥m) τ
shift≤-wkn₁-comm record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤m j≥m τ =
  refl , eq Γ Δ m≤n i≤m j≥m τ , refl
  where
  eq : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ {suc n} j ≥ m) y →
       drop′ {a} {A} (≤-step m≤n) i≤m (ys ++ (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) j≥m) y)) ≡
       insert′ (drop′ m≤n i≤m (ys ++ xs)) (s≤s (≤-trans i≤m m≤n)) (reduce≥′ (≤-step (≤-trans i≤m m≤n)) (≤-trans i≤m j≥m)) y
  eq _ [] z≤n z≤n _ _ = refl
  eq {j = suc _} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) y = cong (x ∷_) (eq xs ys m≤n z≤n j≥m y)
  eq {j = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) y = eq xs ys m≤n i≤m j≥m y

shift≤-wkn₂-comm-≤ : ∀ {n i j} Γ,Δ i≤j j≤m τ →
                     shift≤ {i = i} (wkn₂ {n} {j} Γ,Δ j≤m τ) (≤-trans i≤j (≤-step j≤m)) ≋
                     wkn₁ (shift≤ Γ,Δ (≤-trans i≤j j≤m)) i≤j τ
shift≤-wkn₂-comm-≤ record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ =
  refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ i≤j j≤m τ
  where
  eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
        drop′ {a} {A} (s≤s m≤n) (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y ++ xs) ≡
        insert′
          (drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs))
          (s≤s (≤-trans (≤-trans i≤j j≤m) m≤n))
          (reduce≥′ (≤-step (≤-trans (≤-trans i≤j j≤m) m≤n)) i≤j)
          y
  eq₁ {j = zero} _ _ _ z≤n _ _ = refl
  eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) y = cong (x ∷_) (eq₁ xs ys m≤n z≤n j≤m y)
  eq₁ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y

  eq₂ : ∀ {a A n m i j} ys (i≤j : i ℕ.≤ toℕ {suc n} j) (j≤m : toℕ j ℕ.≤ m) y →
        take′ {a} {A} (≤-trans i≤j (≤-step j≤m)) (insert ys (fromℕ< (s≤s j≤m)) y) ≡
        take′ (≤-trans i≤j j≤m) ys
  eq₂ {j = zero} _ z≤n _ _ = refl
  eq₂ {j = suc _} _ z≤n _ _ = refl
  eq₂ {j = suc zero} (_ ∷ _) (s≤s z≤n) (s≤s _) _ = refl
  eq₂ {j = suc (suc _)} (x ∷ ys) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys i≤j j≤m y)

shift≤-wkn₂-comm-> : ∀ {n i j} Γ,Δ i≤j j≤m τ →
                     shift≤ {i = suc j} (wkn₂ {n} {i} Γ,Δ (≤-trans i≤j j≤m) τ) (s≤s j≤m) ≋
                     wkn₂ (shift≤ Γ,Δ j≤m) i≤j τ
shift≤-wkn₂-comm-> record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m τ = refl , eq₁ Γ Δ m≤n i≤j j≤m τ , eq₂ Δ m≤n i≤j j≤m τ
  where
  eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
        drop′ {a} {A} (s≤s m≤n) (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y ++ xs) ≡
        drop′ m≤n j≤m (ys ++ xs)
  eq₁ {i = zero} _ _ _ _ _ _ = refl
  eq₁ {i = suc _} xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = eq₁ xs ys m≤n i≤j j≤m y

  eq₂ : ∀ {a A n m i j} ys (m≤n : m ℕ.≤ n) (i≤j : toℕ {suc n} i ℕ.≤ j) (j≤m : j ℕ.≤ m) y →
        take′ {a} {A} (s≤s j≤m) (insert ys (fromℕ< (s≤s (≤-trans i≤j j≤m))) y) ≡
        insert (take′ j≤m ys) (fromℕ< (s≤s i≤j)) y
  eq₂ {i = zero} _ _ _ _ _ = refl
  eq₂ {i = suc _} (x ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) y = cong (x ∷_) (eq₂ ys m≤n i≤j j≤m y)

shift≤-identity : ∀ {n} Γ,Δ → shift≤ {n} Γ,Δ ≤-refl ≋ Γ,Δ
shift≤-identity record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } = refl , eq₁ Γ Δ m≤n , eq₂ Δ
  where
  eq₁ : ∀ {a A n m} xs ys (m≤n : m ℕ.≤ n) → drop′ {a} {A} m≤n ≤-refl (ys ++ xs) ≡ xs
  eq₁ xs [] z≤n = refl
  eq₁ xs (_ ∷ ys) (s≤s m≤n) = eq₁ xs ys m≤n

  eq₂ : ∀ {a A m} ys → take′ {a} {A} {m} ≤-refl ys ≡ ys
  eq₂ [] = refl
  eq₂ (x ∷ ys) = cong (x ∷_) (eq₂ ys)

shift≤-idem : ∀ {n i j} Γ,Δ i≤j j≤m → shift≤ {n} {i} (shift≤ {i = j} Γ,Δ j≤m) i≤j ≋ shift≤ Γ,Δ (≤-trans i≤j j≤m)
shift≤-idem record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≤j j≤m = refl , eq₁ Γ Δ m≤n i≤j j≤m , eq₂ Δ i≤j j≤m
  where
  eq₁ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) →
        drop′ {a} {A} (≤-trans j≤m m≤n) i≤j (take′ j≤m ys ++ drop′ m≤n j≤m (ys ++ xs)) ≡
        drop′ m≤n (≤-trans i≤j j≤m) (ys ++ xs)
  eq₁ _ _ _ z≤n z≤n = refl
  eq₁ xs (y ∷ ys) (s≤s m≤n) z≤n (s≤s j≤m) = cong (y ∷_) (eq₁ xs ys m≤n z≤n j≤m)
  eq₁ xs (_ ∷ ys) (s≤s m≤n) (s≤s i≤j) (s≤s j≤m) = eq₁ xs ys m≤n i≤j j≤m

  eq₂ : ∀ {a A m i j} ys (i≤j : i ℕ.≤ j) (j≤m : j ℕ.≤ m) → take′ {a} {A} i≤j (take′ j≤m ys) ≡ take′ (≤-trans i≤j j≤m) ys
  eq₂ ys z≤n j≤m = refl
  eq₂ (y ∷ ys) (s≤s i≤j) (s≤s j≤m) = cong (y ∷_) (eq₂ ys i≤j j≤m)

-- rotate₁-shift : ∀ {n i j} Γ,Δ i≥m i≤j → rotate₁ {n} {i} {j} (shift Γ,Δ) z≤n i≤j ≋ shift (rotate₁ Γ,Δ i≥m i≤j)
-- rotate₁-shift record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i≥m i≤j =
--   refl ,
--   eq Γ Δ m≤n i≥m i≤j ,
--   refl
--   where
--   eq : ∀ {a A m n i j} xs ys (m≤n : m ℕ.≤ n) i≥m i≤j → ?
--     -- rotate {a} {A} i j i≤j (C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ xs)) ≡
--     -- C.cast (trans (sym (+-∸-assoc m m≤n)) (m+n∸m≡n m n)) (ys ++ rotate (reduce≥′ m≤n i i≥m) (reduce≥′ m≤n j (≤-trans i≥m i≤j)) (reduce≥′-mono m≤n i j i≥m i≤j) xs)
--   eq xs ys m≤n i≥m i≤j = ?
--   -- eq {m = zero} {suc _} (x ∷ xs) [] _ zero j _ _ = sym (cast-insert xs refl j j refl x)
--   -- eq {m = zero} (x ∷ xs) [] _ (suc i) (suc j) _ i≤j = cong (x ∷_) (eq xs [] z≤n i j z≤n (pred-mono i≤j))
--   -- eq {m = suc _} {suc _} xs (y ∷ ys) m≤n (suc i) (suc j) (s≤s i≥m) (s≤s i≤j) = cong (y ∷_) (eq xs ys (pred-mono m≤n) i j i≥m i≤j)

-- transfer-cons : ∀ {n i j} Γ,Δ i<m 1+j≥m τ → transfer {suc n} {suc i} {suc j} (cons Γ,Δ τ) (s≤s i<m) 1+j≥m ≋ cons (transfer Γ,Δ i<m (pred-mono 1+j≥m)) τ
-- transfer-cons record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i<m 1+j≥m τ =
--   refl , eq₁ Γ Δ m≤n (fromℕ< i<m) 1+j≥m τ , eq₂ Δ (fromℕ< i<m) τ
--   where
--   eq₁ : ∀ {a A m n j} xs ys (m≤n : suc m ℕ.≤ n) i 1+j≥m y → ? ≡ ?
--     -- insert′ {a} {A} xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) 1+j≥m) (lookup (y ∷ ys) (suc i)) ≡
--     -- insert′ xs m≤n (reduce≥′ (pred-mono (≤-step m≤n)) (pred-mono 1+j≥m)) (lookup ys i)
--   eq₁ xs ys m≤n i 1+j≥m y = ?
--   -- eq₁ {m = zero} {suc _} xs ys m≤n i j 1+j≥m y = refl
--   -- eq₁ {m = suc m} xs ys m≤n i zero 1+j≥m x = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
--   -- eq₁ {m = suc m} {suc _} xs (x ∷ ys) m≤n i (suc j) 1+j≥m y = refl

--   eq₂ : ∀ {a A m} ys (i : Fin (suc m)) y →
--     remove′ {a} {A} (y ∷ ys) (suc i) ≡ y ∷ remove′ ys i
--   eq₂ (x ∷ ys) i y = refl

-- transfer-shift : ∀ {n i j} (Γ,Δ : Context n) i j i<m 1+j≥m → rotate₁ (shift Γ,Δ) z≤n (pred-mono (≤-trans i<m 1+j≥m)) ≋ shift (transfer Γ,Δ i j i<m 1+j≥m)
-- transfer-shift record { m = suc m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ } i j i<m 1+j≥m =
--   refl ,
--   eq Γ Δ m≤n i j i<m 1+j≥m ,
--   refl
--   where
--   eq : ∀ {a A m n} xs ys .(m≤n : suc m ℕ.≤ n) i j i<m .(1+j≥m : _) →
--     rotate {a} {A} i j
--       (pred-mono {_} {suc (toℕ j)} (≤-trans i<m 1+j≥m))
--       (C.cast (trans (sym (+-∸-assoc (suc m) m≤n)) (m+n∸m≡n (suc m) n)) (ys ++ xs)) ≡
--     C.cast
--       (trans (sym (+-∸-assoc m (pred-mono (≤-step m≤n)))) (m+n∸m≡n (suc m) n))
--       ( remove′ ys (λ ()) (fromℕ< i<m) ++
--         insert′ xs m≤n (λ ())
--           (reduce≥′ (pred-mono (≤-step m≤n)) j (pred-mono 1+j≥m))
--           (lookup ys (fromℕ< i<m)))
--   eq {m = zero} {suc _} xs (y ∷ []) m≤n zero zero i<m 1+j≥m = refl
--   eq {m = zero} {suc (suc _)} (x ∷ xs) (y ∷ []) _ zero (suc j) _ _ = cong (x ∷_) (eq xs (y ∷ []) (s≤s z≤n) zero j (s≤s z≤n) (s≤s z≤n))
--   eq {m = zero} {suc _} _ (_ ∷ []) _ (suc _) _ (s≤s ()) _
--   eq {m = suc _} {suc _} _ (_ ∷ _) _ _ zero _ 1+j≥m = ⊥-elim (<⇒≱ (s≤s (s≤s z≤n)) (≤-recomputable 1+j≥m))
--   eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n zero (suc j) i<m 1+j≥m = cong (y ∷_) (eq xs (x ∷ ys) (pred-mono m≤n) zero j (s≤s z≤n) (pred-mono 1+j≥m))
--   eq {m = suc _} {suc (suc _)} xs (x ∷ y ∷ ys) m≤n (suc i) (suc j) (s≤s i<m) 1+j≥m = cong (x ∷_) (eq xs (y ∷ ys) (pred-mono m≤n) i j i<m (pred-mono 1+j≥m))