1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Derivation.Properties
{c ℓ} (over : Setoid c ℓ)
where
open Setoid over renaming (Carrier to C; _≈_ to _∼_)
open import Cfe.Context over hiding (_≋_) renaming (≋-sym to ≋ᶜ-sym)
open import Cfe.Expression over hiding (_≋_)
open import Cfe.Language over hiding (≤-refl; _≈_; _<_)
open import Cfe.Language.Construct.Concatenate over using (Concat)
open import Cfe.Language.Indexed.Construct.Iterate over
open import Cfe.Judgement over renaming (wkn₁ to wkn₁ⱼ; shift≤ to shift≤ⱼ)
open import Cfe.Derivation.Base over
open import Cfe.Type over using (_⊛_; _⊨_)
open import Data.Bool using (T; not; true; false)
open import Data.Empty using (⊥-elim)
open import Data.Fin as F hiding (_<_)
open import Data.List hiding (null)
open import Data.List.Relation.Binary.Equality.Setoid over
open import Data.Nat as ℕ hiding (_⊔_; _^_; _<_)
open import Data.Nat.Properties using (≤-step; m≤m+n; m≤n+m; ≤-refl; n<1+n; module ≤-Reasoning)
open import Data.Nat.Induction using () renaming (<-wellFounded to <ⁿ-wellFounded)
open import Data.Product as Product
open import Data.Product.Relation.Binary.Lex.Strict
open import Data.Sum as Sum
open import Data.Vec hiding (length; _++_)
open import Data.Vec.Relation.Binary.Pointwise.Inductive
open import Data.Vec.Relation.Binary.Pointwise.Extensional as PW
open import Function
open import Induction.WellFounded
open import Level hiding (Lift)
open import Relation.Binary
import Relation.Binary.Construct.On as On
open import Relation.Binary.PropositionalEquality as ≡ hiding (subst₂; setoid)
private
infix 4 _<_
_<_ : ∀ {m n} → REL (List C × Expression m) (List C × Expression n) _
(l , e) < (l′ , e′) = length l ℕ.< length l′ ⊎ length l ≡ length l′ × e <ᵣₐₙₖ e′
_<ₙ_ : Rel (∃[ n ] List C × Expression n) _
nle <ₙ nle′ = proj₂ nle < proj₂ nle′
<-wellFounded : ∀ {n} → WellFounded (_<_ {n})
<-wellFounded = On.wellFounded (Product.map₁ length) (×-wellFounded <ⁿ-wellFounded <ᵣₐₙₖ-wellFounded)
unroll₁ : ∀ {n} {Γ,Δ : Context n} {e e′ τ τ′ i} (i≥m : toℕ i ℕ.≥ _) →
wkn₁ Γ,Δ i≥m τ′ ⊢ e ∶ τ → Γ,Δ ⊢ μ e′ ∶ τ′ →
∀ {l} γ → PW.Pointwise _⊨_ γ (toVec Γ,Δ) →
l ∈ ⟦ e ⟧ (insert γ i (⟦ μ e′ ⟧ γ)) →
∃[ n ] l ∈ ⟦ e ⟧ (insert γ i (((λ X → ⟦ e′ ⟧ (X ∷ γ)) ^ n) (Lift _ ∅)))
unroll₁ {e = e} i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ {l = l} γ γ⊨Γ,Δ l∈⟦e⟧ =
All.wfRec <-wellFounded _ Pred {!!} (l , e) i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧
where
Pred : ∀ {n} → List C × Expression (ℕ.suc n) → Set _
Pred {n} (l , e) =
∀ {Γ,Δ : Context n} {e′ τ τ′ i} (i≥m : toℕ i ℕ.≥ _) →
wkn₁ Γ,Δ i≥m τ′ ⊢ e ∶ τ → Γ,Δ ⊢ μ e′ ∶ τ′ →
∀ γ → PW.Pointwise _⊨_ γ (toVec Γ,Δ) →
l ∈ ⟦ e ⟧ (insert γ i (⟦ μ e′ ⟧ γ)) →
∃[ n ] l ∈ ⟦ e ⟧ (insert γ i (((λ X → ⟦ e′ ⟧ (X ∷ γ)) ^ n) (Lift _ ∅)))
go : ∀ {n} l,e → WfRec _<_ (Pred {n}) l,e → Pred l,e
go (l , ε) rec i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧ = 1 , l∈⟦e⟧
go (l , Char x) rec i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧ = 1 , l∈⟦e⟧
go (l , (e₁ ∨ e₂)) rec i≥m (Vee Γ,Δ⊢e₁∶τ₁ _ _) Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ (inj₁ l∈⟦e₁⟧) =
Product.map₂ inj₁ (rec (l , e₁) {!!} i≥m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e₁⟧)
go (l , (e₁ ∨ e₂)) rec i≥m (Vee _ Γ,Δ⊢e₂∶τ₂ _) Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ (inj₂ l∈⟦e₂⟧) =
Product.map₂ inj₂ (rec (l , e₂) {!!} i≥m Γ,Δ⊢e₂∶τ₂ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e₂⟧)
go (l , (e₁ ∙ e₂)) rec {Γ,Δ} {τ′ = τ′} i≥m (Γ,Δ⊢e∶τ @ (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ _)) Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧ =
Product.zip ℕ._+_ (λ l₁∈⟦e₁⟧ l₂∈⟦e₂⟧ → record { l₁∈A = {!fⁿ≤fⁿ⁺ᵐ!} ; l₂∈B = {!!} ; eq = l∈⟦e⟧.eq }) l₁∈⟦e₁⟧′ l₂∈⟦e₂⟧′
where
module l∈⟦e⟧ = Concat l∈⟦e⟧
l₁∈⟦e₁⟧′ = rec (l∈⟦e⟧.l₁ , e₁) {!!} i≥m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧.l₁∈A
l₂∈⟦e₂⟧′ = rec (l∈⟦e⟧.l₂ , e₂) {!!} z≤n (congᶜ (shift≤-wkn₁-comm Γ,Δ z≤n i≥m τ′) Δ++Γ,∙⊢e₂∶τ₂) (shift≤ⱼ Γ,Δ⊢e′∶τ′ z≤n) γ (subst (PW.Pointwise _⊨_ γ) (≡.sym (shift≤-toVec Γ,Δ z≤n)) γ⊨Γ,Δ) l∈⟦e⟧.l₂∈B
go (l , Var x) rec i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ l∈⟦e⟧ = {!!}
go (l , μ e) rec i≥m Γ,Δ⊢e∶τ Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ (suc n , l∈⟦e⟧) =
Product.map₂ {!!} (rec (l , e [ μ e / F.zero ]) {!!} i≥m {!!} Γ,Δ⊢e′∶τ′ γ γ⊨Γ,Δ {!!})
l∈⟦e⟧⇒e⤇l : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → e ⤇ l
l∈⟦e⟧⇒e⤇l {e} {τ} ∙,∙⊢e∶τ {l} l∈⟦e⟧ = All.wfRec <-wellFounded _ Pred go (l , e) ∙,∙⊢e∶τ l∈⟦e⟧
where
Pred : List C × Expression 0 → Set _
Pred (l , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → l ∈ ⟦ e ⟧ [] → e ⤇ l
e[μe/0]<μe : ∀ {e τ} l → ∙,∙ ⊢ μ e ∶ τ → (l , e [ μ e / F.zero ]) < (l , μ e)
e[μe/0]<μe {e} l (Fix ∙,τ⊢e∶τ)= inj₂ (≡.refl , (begin-strict
rank (e [ μ e / F.zero ]) ≡⟨ subst-preserves-rank z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ) ⟩
rank e <⟨ n<1+n (rank e) ⟩
ℕ.suc (rank e) ≡⟨⟩
rank (μ e) ∎))
where
open ≤-Reasoning
l₁++l₂≋l⇒∣l₁∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₁ ℕ.< length l) ⊎ (length l₁ ≡ length l)
l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] [] = inj₂ ≡.refl
l₁++l₂≋l⇒∣l₁∣≤∣l∣ [] (_ ∷ _) = inj₁ (s≤s z≤n)
l₁++l₂≋l⇒∣l₁∣≤∣l∣ (_ ∷ l₁) (_ ∷ eq) = Sum.map s≤s (cong ℕ.suc) (l₁++l₂≋l⇒∣l₁∣≤∣l∣ l₁ eq)
l₁++l₂≋l⇒∣l₂∣≤∣l∣ : ∀ {l₂ l} l₁ → l₁ ++ l₂ ≋ l → (length l₂ ℕ.< length l) ⊎ (length l₁ ≡ 0)
l₁++l₂≋l⇒∣l₂∣≤∣l∣ [] _ = inj₂ ≡.refl
l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ []) (_ ∷ []) = inj₁ (s≤s z≤n)
l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ _ ∷ eq) = inj₁ ([ s≤s , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ []) (x∼y ∷ eq)))
l₁++l₂≋l⇒∣l₂∣≤∣l∣ (_ ∷ x ∷ l₁) (_ ∷ eq) = inj₁ ([ ≤-step , (λ ()) ]′ (l₁++l₂≋l⇒∣l₂∣≤∣l∣ (x ∷ l₁) eq))
e₁<e₁∙e₂ : ∀ {l e₁} e₂ → (l∈⟦e₁∙e₂⟧ : l ∈ ⟦ e₁ ∙ e₂ ⟧ []) → (Concat.l₁ l∈⟦e₁∙e₂⟧ , e₁) < (l , e₁ ∙ e₂)
e₁<e₁∙e₂ _ l∈⟦e₁∙e₂⟧ with l₁++l₂≋l⇒∣l₁∣≤∣l∣ (Concat.l₁ l∈⟦e₁∙e₂⟧) (Concat.eq l∈⟦e₁∙e₂⟧)
... | inj₁ ∣l₁∣<∣l∣ = inj₁ ∣l₁∣<∣l∣
... | inj₂ ∣l₁∣≡∣l∣ = inj₂ (∣l₁∣≡∣l∣ , ≤-refl)
e₂<e₁∙e₂ : ∀ {l e₁ e₂ τ} → ∙,∙ ⊢ e₁ ∙ e₂ ∶ τ → (l∈⟦e₁∙e₂⟧ : l ∈ ⟦ e₁ ∙ e₂ ⟧ []) → (Concat.l₂ l∈⟦e₁∙e₂⟧ , e₂) < (l , e₁ ∙ e₂)
e₂<e₁∙e₂ (Cat ∙,∙⊢e₁∶τ₁ _ τ₁⊛τ₂) l∈⟦e₁∙e₂⟧ with l₁++l₂≋l⇒∣l₂∣≤∣l∣ (Concat.l₁ l∈⟦e₁∙e₂⟧) (Concat.eq l∈⟦e₁∙e₂⟧)
... | inj₁ ∣l₂∣<∣l∣ = inj₁ ∣l₂∣<∣l∣
... | inj₂ ∣l₁∣≡0 with Concat.l₁ l∈⟦e₁∙e₂⟧ | Concat.l₁∈A l∈⟦e₁∙e₂⟧ | (_⊛_.τ₁.Null τ₁⊛τ₂) | _⊛_.¬n₁ τ₁⊛τ₂ | _⊨_.n⇒n (soundness ∙,∙⊢e₁∶τ₁ [] (ext (λ ()))) | ∣l₁∣≡0
... | [] | ε∈A | false | _ | n⇒n | refl = ⊥-elim (n⇒n ε∈A)
l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ : ∀ {l} e n → l ∈ ((λ X → ⟦ e ⟧ (X ∷ [])) ^ n) (⟦ ⊥ ⟧ []) → l ∈ ⟦ e [ μ e / F.zero ] ⟧ []
l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ e (suc n) l∈⟦e⟧ⁿ = _≤_.f
(begin
((λ X → ⟦ e ⟧ (X ∷ [])) ^ (ℕ.suc n)) (⟦ ⊥ ⟧ []) ≡⟨⟩
⟦ e ⟧ (((λ X → ⟦ e ⟧ (X ∷ [])) ^ n) (⟦ ⊥ ⟧ []) ∷ []) ≤⟨ mono e (fⁿ≤⋃f (λ X → ⟦ e ⟧ (X ∷ [])) n ∷ []) ⟩
⟦ e ⟧ (⋃ (λ X → ⟦ e ⟧ (X ∷ [])) ∷ []) ≡⟨⟩
⟦ e ⟧ (⟦ μ e ⟧ [] ∷ []) ≈˘⟨ subst-fun e (μ e) F.zero [] ⟩
⟦ e [ μ e / F.zero ] ⟧ [] ∎)
l∈⟦e⟧ⁿ
where
open import Relation.Binary.Reasoning.PartialOrder (poset _)
go : ∀ l,e → WfRec _<_ Pred l,e → Pred l,e
go (l , e) rec Eps (lift refl) = Eps
go (l , e) rec (Char c) (lift (c∼y ∷ [])) = Char c∼y
go (l , μ e) rec (Fix ∙,τ⊢e∶τ) (n , l∈⟦e⟧ⁿ) =
Fix (rec
(l , e [ μ e / F.zero ])
(e[μe/0]<μe l (Fix ∙,τ⊢e∶τ))
(subst₂ z≤n ∙,τ⊢e∶τ (Fix ∙,τ⊢e∶τ))
(l∈⟦e⟧ⁿ⇒l∈⟦e[μe/0]⟧ e n l∈⟦e⟧ⁿ))
go (l , e₁ ∙ e₂) rec (∙,∙⊢e₁∙e₂∶τ @ (Cat ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ _)) l∈⟦e⟧ =
Cat
(rec (l∈⟦e⟧.l₁ , e₁) (e₁<e₁∙e₂ e₂ l∈⟦e⟧) ∙,∙⊢e₁∶τ₁ l∈⟦e⟧.l₁∈A)
(rec (l∈⟦e⟧.l₂ , e₂) (e₂<e₁∙e₂ ∙,∙⊢e₁∙e₂∶τ l∈⟦e⟧) ∙,∙⊢e₂∶τ₂ l∈⟦e⟧.l₂∈B)
l∈⟦e⟧.eq
where
module l∈⟦e⟧ = Concat l∈⟦e⟧
go (l , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ _ _) (inj₁ l∈⟦e₁⟧) =
Veeˡ (rec (l , e₁) (inj₂ (≡.refl , e₁<ᵣₐₙₖe₁∨e₂ e₁ e₂)) ∙,∙⊢e₁∶τ₁ l∈⟦e₁⟧)
go (l , e₁ ∨ e₂) rec (Vee _ ∙,∙⊢e₂∶τ₂ _) (inj₂ l∈⟦e₂⟧) =
Veeʳ (rec (l , e₂) (inj₂ (≡.refl , e₂<ᵣₐₙₖe₁∨e₂ e₁ e₂)) ∙,∙⊢e₂∶τ₂ l∈⟦e₂⟧)
e⤇l⇒l∈⟦e⟧ : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → e ⤇ l → l ∈ ⟦ e ⟧ []
e⤇l⇒l∈⟦e⟧ {e} ∙,∙⊢e∶τ {l} e⤇l = All.wfRec <-wellFounded _ Pred go (l , e) ∙,∙⊢e∶τ e⤇l
where
Pred : List C × Expression 0 → Set _
Pred (l , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → e ⤇ l → l ∈ ⟦ e ⟧ []
go : ∀ l,e → WfRec _<_ Pred l,e → Pred l,e
go (l , ε) rec ∙,∙⊢e∶τ Eps = Level.lift ≡.refl
go (l , (Char _)) rec ∙,∙⊢e∶τ (Char c∼y) = Level.lift (c∼y ∷ [])
go (l , (e₁ ∙ e₂)) rec (∙,∙⊢e₁∙e₂∶τ @ (Cat ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ _)) (Cat {l₁ = l₁} {l₂ = l₂} e₁⤇l₁ e₂⤇l₂ eq) = record
{ l₁∈A = rec (l₁ , e₁) {!!} ∙,∙⊢e₁∶τ₁ e₁⤇l₁
; l₂∈B = rec (l₂ , e₂) {!!} ∙,∙⊢e₂∶τ₂ e₂⤇l₂
; eq = eq
}
go (l , (e₁ ∨ e₂)) rec ∙,∙⊢e∶τ (Veeˡ e₁⤇l) = inj₁ (rec {!!} {!!} {!!} e₁⤇l)
go (l , (e₁ ∨ e₂)) rec ∙,∙⊢e∶τ (Veeʳ e₂⤇l) = inj₂ (rec {!!} {!!} {!!} e₂⤇l)
go (l , (μ e)) rec ∙,∙⊢e∶τ (Fix e⤇l) = {!e!}
derivation-unique : ∀ {e τ} → ∙,∙ ⊢ e ∶ τ → ∀ {l} → l ∈ ⟦ e ⟧ [] → (e⤇l e⤇l′ : e ⤇ l) → e⤇l ≈ e⤇l′
derivation-unique {e} ∙,∙⊢e∶τ {l} l∈⟦e⟧ e⤇l e⤇l′ = All.wfRec <-wellFounded _ Pred {!!} (l , e) ∙,∙⊢e∶τ l∈⟦e⟧ e⤇l e⤇l′
where
Pred : List C × Expression 0 → Set _
Pred (l , e) = ∀ {τ} → ∙,∙ ⊢ e ∶ τ → l ∈ ⟦ e ⟧ [] → (e⤇l e⤇l′ : e ⤇ l) → e⤇l ≈ e⤇l′
go : ∀ l,e → WfRec _<_ Pred l,e → Pred l,e
go (l , e) rec ∙,∙⊢e∶τ l∈⟦e⟧ Eps Eps = Eps
go (l , e) rec ∙,∙⊢e∶τ l∈⟦e⟧ (Char c∼y) (Char c∼y′) = Char c∼y c∼y′
go (l , e) rec ∙,∙⊢e∶τ l∈⟦e⟧ (Cat e₁⤇l₁ e₂⤇l₂ eq) (Cat e₁⤇l₁′ e₂⤇l₂′ eq′) = {!!}
go (l , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ _ _) (inj₁ l∈⟦e₁⟧) (Veeˡ e₁⤇l) (Veeˡ e₁⤇l′) =
Veeˡ (rec (l , e₁) (inj₂ (≡.refl , e₁<ᵣₐₙₖe₁∨e₂ e₁ e₂)) ∙,∙⊢e₁∶τ₁ l∈⟦e₁⟧ e₁⤇l e₁⤇l′)
go ([] , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁#τ₂) (inj₁ l∈⟦e⟧) (Veeˡ e₁⤇l) (Veeʳ e₂⤇l′) =
⊥-elim {!!}
go (x ∷ l , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁#τ₂) (inj₁ l∈⟦e⟧) (Veeˡ e₁⤇l) (Veeʳ e₂⤇l′) =
⊥-elim {!!}
go (l , e₁ ∨ e₂) rec (Vee ∙,∙⊢e₁∶τ₁ ∙,∙⊢e₂∶τ₂ τ₁#τ₂) (inj₂ l∈⟦e⟧) (Veeˡ e₁⤇l) _ = {!!}
go (l , e₁ ∨ e₂) rec ∙,∙⊢e∶τ l∈⟦e⟧ (Veeʳ e₂⤇l) (Veeˡ e₁⤇l′) = {!!}
go (l , e₁ ∨ e₂) rec ∙,∙⊢e∶τ l∈⟦e⟧ (Veeʳ e₂⤇l) (Veeʳ e₂⤇l′) = {!!}
go (l , e) rec ∙,∙⊢e∶τ l∈⟦e⟧ (Fix e⤇l) e⤇l′ = {!!}
|