blob: f3570484fa8b8610b362d00ddca513236102698c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
|
{-# OPTIONS --without-K --safe #-}
module Cfe.Fin.Base where
open import Data.Empty using (⊥-elim)
open import Data.Nat using (ℕ; zero; suc; pred; z≤n)
open import Data.Nat.Properties using (pred-mono)
open import Data.Fin using (Fin; zero; suc; toℕ; inject₁; _≤_)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong)
data Fin< : ∀ {n} → Fin n → Set where
zero : ∀ {n i} → Fin< {suc n} (suc i)
suc : ∀ {n i} → Fin< {n} i → Fin< (suc i)
data Fin<< : ∀ {n i} → Fin< {n} i → Set where
zero : ∀ {n i j} → Fin<< {suc n} {suc i} (suc j)
suc : ∀ {n i j} → Fin<< {n} {i} j → Fin<< (suc j)
data Fin> : ∀ {n} → Fin n → Set where
zero : ∀ {n} → Fin> {suc (suc n)} zero
suc : ∀ {n} → Fin> {suc n} zero → Fin> {suc (suc n)} zero
inj : ∀ {n i} → Fin> {n} i → Fin> (suc i)
data Fin>< : ∀ {n i} → Fin> {n} i → Set where
zero : ∀ {n j} → Fin>< {suc (suc n)} {zero} (suc j)
suc : ∀ {n j} → Fin>< {suc n} {zero} j → Fin>< (suc j)
inj : ∀ {n i j} → Fin>< {n} {i} j → Fin>< (inj j)
------------------------------------------------------------------------
-- Coversions to ℕ
toℕ< : ∀ {n i} → Fin< {n} i → ℕ
toℕ< zero = 0
toℕ< (suc j) = suc (toℕ< j)
toℕ> : ∀ {n i} → Fin> {n} i → ℕ
toℕ> zero = 0
toℕ> (suc j) = suc (toℕ> j)
toℕ> (inj j) = suc (toℕ> j)
------------------------------------------------------------------------
-- Upwards injections
inject!< : ∀ {n i} → Fin< {suc n} i → Fin n
inject!< {suc _} zero = zero
inject!< {suc _} (suc j) = suc (inject!< j)
inject< : ∀ {n i} → Fin< {n} i → Fin n
inject< zero = zero
inject< (suc j) = suc (inject< j)
inject₁< : ∀ {n i} → Fin< {n} i → Fin< (suc i)
inject₁< zero = zero
inject₁< (suc j) = suc (inject₁< j)
inject!<< : ∀ {n i j} → Fin<< {suc n} {suc i} j → Fin< i
inject!<< {suc _} {suc _} zero = zero
inject!<< {suc _} {suc _} (suc k) = suc (inject!<< k)
inject<< : ∀ {n i j} → Fin<< {n} {i} j → Fin< i
inject<< zero = zero
inject<< (suc k) = suc (inject<< k)
inject!>< : ∀ {n i j} → Fin>< {suc n} {inject₁ i} j → Fin> i
inject!>< {suc (suc _)} {zero} {suc j} zero = zero
inject!>< {suc (suc _)} {zero} {suc j} (suc k) = suc (inject!>< k)
inject!>< {suc (suc _)} {suc _} {inj j} (inj k) = inj (inject!>< k)
inject>< : ∀ {n i j} → Fin>< {n} {i} j → Fin> {n} i
inject>< zero = zero
inject>< (suc k) = suc (inject>< k)
inject>< (inj k) = inj (inject>< k)
------------------------------------------------------------------------
-- Downwards injections
strengthen< : ∀ {n} → (i : Fin n) → Fin< (suc i)
strengthen< zero = zero
strengthen< (suc i) = suc (strengthen< i)
------------------------------------------------------------------------
-- Casts
cast< : ∀ {m n i j} → .(toℕ i ≡ toℕ j) → Fin< {m} i → Fin< {n} j
cast< {i = suc _} {suc _} _ zero = zero
cast< {i = suc _} {suc _} i≡j (suc k) = suc (cast< (cong pred i≡j) k)
cast<< : ∀ {m n i j k l} → .(toℕ< k ≡ toℕ< l) → Fin<< {m} {i} k → Fin<< {n} {j} l
cast<< {k = suc _} {suc _} _ zero = zero
cast<< {k = suc _} {suc _} k≡l (suc x) = suc (cast<< (cong pred k≡l) x)
cast> : ∀ {n i j} → .(j ≤ i) → Fin> {n} i → Fin> j
cast> {_} {zero} {zero} j≤i zero = zero
cast> {_} {zero} {zero} j≤i (suc k) = suc (cast> j≤i k)
cast> {suc (suc _)} {suc i} {zero} j≤i (inj k) = suc (cast> z≤n k)
cast> {suc (suc _)} {suc i} {suc j} j≤i (inj k) = inj (cast> (pred-mono j≤i) k)
------------------------------------------------------------------------
-- Additions
raise!> : ∀ {n i} → Fin> {suc n} i → Fin n
raise!> {suc _} zero = zero
raise!> {suc _} (suc j) = suc (raise!> j)
raise!> {suc _} (inj j) = suc (raise!> j)
suc> : ∀ {n i} → Fin> {n} i → Fin> (inject₁ i)
suc> zero = suc zero
suc> (suc j) = suc (suc> j)
suc> (inj j) = inj (suc> j)
------------------------------------------------------------------------
-- Operations on the index
-- predⁱ< {i = "i"} _ = "pred i"
predⁱ< : ∀ {n i} → Fin< {suc n} i → Fin n
predⁱ< {i = suc i} _ = i
-- inject₁ⁱ> {i = "i"} _ = "i"
inject₁ⁱ> : ∀ {n i} → Fin> {suc n} i → Fin n
inject₁ⁱ> zero = zero
inject₁ⁱ> (suc _) = zero
inject₁ⁱ> {suc _} (inj j) = suc (inject₁ⁱ> j)
------------------------------------------------------------------------
-- Operations
punchIn> : ∀ {n i} → Fin> {suc n} (inject₁ i) → Fin> i → Fin> (inject₁ i)
punchIn> {i = zero} zero k = suc k
punchIn> {i = zero} (suc j) zero = zero
punchIn> {i = zero} (suc j) (suc k) = suc (punchIn> j k)
punchIn> {i = suc _} (inj j) (inj k) = inj (punchIn> j k)
punchOut> : ∀ {n i j k} → raise!> {n} {i} j ≢ raise!> {n} {i} k → Fin> (inject₁ⁱ> j)
punchOut> {j = zero} {zero} j≢k = ⊥-elim (j≢k refl)
punchOut> {j = zero} {suc k} j≢k = k
punchOut> {suc (suc _)} {j = suc j} {zero} j≢k = zero
punchOut> {suc (suc _)} {j = suc zero} {suc k} j≢k = suc (punchOut> (j≢k ∘ cong suc))
punchOut> {suc (suc _)} {j = suc (suc j)} {suc k} j≢k = suc (punchOut> {j = suc j} (j≢k ∘ cong suc))
punchOut> {suc _} {j = inj j} {inj k} j≢k = inj (punchOut> (j≢k ∘ cong suc))
-- reflect "j" _ ≡ "j"
reflect! :
∀ {n i} → (j : Fin< (suc {n} i)) → (k : Fin<< (suc j)) → Fin> (inject₁ (inject!< (inject!<< k)))
reflect! {suc _} zero zero = zero
reflect! {suc (suc _)} {suc _} (suc j) zero = suc (reflect! j zero)
reflect! {suc (suc _)} {suc _} (suc j) (suc k) = inj (reflect! j k)
reflect :
∀ {n i} → (j : Fin< {n} i) → (k : Fin<< (suc j)) → Fin> (inject< (inject!<< k))
reflect {suc (suc n)} zero zero = zero
reflect {_} {suc (suc _)} (suc j) zero = suc (reflect j zero)
reflect {_} {suc (suc _)} (suc j) (suc k) = inj (reflect j k)
|