blob: c07aa564c1d91ea92c84d3ef58f196f6326c8889 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
{-# OPTIONS --without-K --safe #-}
module Cfe.Fin.Properties where
open import Cfe.Fin.Base
open import Data.Empty using (⊥-elim)
open import Data.Fin using (zero; suc; toℕ; punchIn; punchOut; inject₁)
open import Data.Nat using (suc; pred; _≤_; _<_; _≥_; z≤n; s≤s)
open import Data.Nat.Properties using (suc-injective; pred-mono; module ≤-Reasoning)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Properties missing from Data.Fin.Properties
------------------------------------------------------------------------
inject₁-mono : ∀ {n i j} → toℕ {n} i ≤ toℕ {n} j → toℕ (inject₁ i) ≤ toℕ (inject₁ j)
inject₁-mono {i = zero} i≤j = z≤n
inject₁-mono {i = suc i} {suc j} (s≤s i≤j) = s≤s (inject₁-mono i≤j)
------------------------------------------------------------------------
-- Properties of toℕ<
------------------------------------------------------------------------
toℕ<<i : ∀ {n i} j → toℕ< {n} {i} j < toℕ i
toℕ<<i zero = s≤s z≤n
toℕ<<i (suc j) = s≤s (toℕ<<i j)
------------------------------------------------------------------------
-- Properties of toℕ>
toℕ>≥i : ∀ {n i} j → toℕ> {n} {i} j ≥ toℕ i
toℕ>≥i zero = z≤n
toℕ>≥i (suc j) = z≤n
toℕ>≥i (inj j) = s≤s (toℕ>≥i j)
------------------------------------------------------------------------
-- Properties of inject!<
------------------------------------------------------------------------
toℕ-inject!< : ∀ {n i} j → toℕ (inject!< {n} {i} j) ≡ toℕ< j
toℕ-inject!< {suc _} zero = refl
toℕ-inject!< {suc _} (suc j) = cong suc (toℕ-inject!< j)
inject!<-mono :
∀ {m n i j k l} → toℕ< k ≤ toℕ< l → toℕ (inject!< {m} {i} k) ≤ toℕ (inject!< {n} {j} l)
inject!<-mono {k = k} {l} k≤l = begin
toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩
toℕ< k ≤⟨ k≤l ⟩
toℕ< l ≡˘⟨ toℕ-inject!< l ⟩
toℕ (inject!< l) ∎
where open ≤-Reasoning
inject!<-cong :
∀ {m n i j k l} → toℕ< k ≡ toℕ< l → toℕ (inject!< {m} {i} k) ≡ toℕ (inject!< {n} {j} l)
inject!<-cong {k = k} {l} k≡l = begin
toℕ (inject!< k) ≡⟨ toℕ-inject!< k ⟩
toℕ< k ≡⟨ k≡l ⟩
toℕ< l ≡˘⟨ toℕ-inject!< l ⟩
toℕ (inject!< l) ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of inject*<*
------------------------------------------------------------------------
inject-square : ∀ {n i j} k → inject< (inject!<< {n} {i} {j} k) ≡ inject!< (inject<< k)
inject-square {suc n} {suc i} zero = refl
inject-square {suc n} {suc i} (suc k) = cong suc (inject-square k)
------------------------------------------------------------------------
-- Properties of strengthen<
------------------------------------------------------------------------
toℕ-strengthen< : ∀ {n} i → toℕ< (strengthen< {n} i) ≡ toℕ i
toℕ-strengthen< zero = refl
toℕ-strengthen< (suc i) = cong suc (toℕ-strengthen< i)
strengthen<-inject!< : ∀ {n i} j → toℕ< (strengthen< (inject!< {n} {i} j)) ≡ toℕ< j
strengthen<-inject!< {suc _} zero = refl
strengthen<-inject!< {suc _} (suc j) = cong suc (strengthen<-inject!< j)
------------------------------------------------------------------------
-- Properties of cast<
------------------------------------------------------------------------
toℕ-cast< : ∀ {m n i j} i≡j k → toℕ< (cast< {m} {n} {i} {j} i≡j k) ≡ toℕ< k
toℕ-cast< {i = suc _} {suc _} i≡j zero = refl
toℕ-cast< {i = suc _} {suc _} i≡j (suc k) = cong suc (toℕ-cast< (cong pred i≡j) k)
------------------------------------------------------------------------
-- Properties of cast>
------------------------------------------------------------------------
toℕ-cast> : ∀ {n i j} j≤i k → toℕ> (cast> {n} {i} {j} j≤i k) ≡ toℕ> k
toℕ-cast> {_} {zero} {zero} j≤i zero = refl
toℕ-cast> {_} {zero} {zero} j≤i (suc k) = cong suc (toℕ-cast> j≤i k)
toℕ-cast> {suc (suc n)} {suc i} {zero} j≤i (inj k) = cong suc (toℕ-cast> z≤n k)
toℕ-cast> {suc (suc n)} {suc i} {suc j} j≤i (inj k) = cong suc (toℕ-cast> (pred-mono j≤i) k)
------------------------------------------------------------------------
-- Properties of raise!>
------------------------------------------------------------------------
toℕ-raise!> : ∀ {n i} j → toℕ (raise!> {n} {i} j) ≡ toℕ> j
toℕ-raise!> zero = refl
toℕ-raise!> (suc j) = cong suc (toℕ-raise!> j)
toℕ-raise!> {suc n} (inj j) = cong suc (toℕ-raise!> j)
raise!>-cong : ∀ {m n i j k l} → toℕ> k ≡ toℕ> l → toℕ (raise!> {m} {i} k) ≡ toℕ (raise!> {n} {j} l)
raise!>-cong {k = k} {l} k≡l = begin
toℕ (raise!> k) ≡⟨ toℕ-raise!> k ⟩
toℕ> k ≡⟨ k≡l ⟩
toℕ> l ≡˘⟨ toℕ-raise!> l ⟩
toℕ (raise!> l) ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of suc>
------------------------------------------------------------------------
toℕ-suc> : ∀ {n i} j → toℕ> (suc> {n} {i} j) ≡ suc (toℕ> j)
toℕ-suc> zero = refl
toℕ-suc> (suc j) = cong suc (toℕ-suc> j)
toℕ-suc> (inj j) = cong suc (toℕ-suc> j)
------------------------------------------------------------------------
-- Properties of predⁱ<
------------------------------------------------------------------------
toℕ-predⁱ< : ∀ {n i} j → suc (toℕ (predⁱ< {n} {i} j)) ≡ toℕ i
toℕ-predⁱ< {i = suc _} _ = refl
predⁱ<-mono :
∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (predⁱ< {n} {i} k) ≤ toℕ (predⁱ< {n} {j} l)
predⁱ<-mono {i = i} {j} k l i≤j = pred-mono (begin
suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩
toℕ i ≤⟨ i≤j ⟩
toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩
suc (toℕ (predⁱ< l)) ∎)
where open ≤-Reasoning
predⁱ<-cong :
∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (predⁱ< {n} {i} k) ≡ toℕ (predⁱ< {n} {j} l)
predⁱ<-cong {i = i} {j} k l i≡j = suc-injective (begin
suc (toℕ (predⁱ< k)) ≡⟨ toℕ-predⁱ< k ⟩
toℕ i ≡⟨ i≡j ⟩
toℕ j ≡˘⟨ toℕ-predⁱ< l ⟩
suc (toℕ (predⁱ< l)) ∎)
where open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of inject₁ⁱ>
------------------------------------------------------------------------
toℕ-inject₁ⁱ> : ∀ {n i} j → toℕ (inject₁ⁱ> {n} {i} j) ≡ toℕ i
toℕ-inject₁ⁱ> {suc _} zero = refl
toℕ-inject₁ⁱ> {suc _} (suc k) = refl
toℕ-inject₁ⁱ> {suc _} (inj k) = cong suc (toℕ-inject₁ⁱ> k)
inject₁ⁱ>-mono :
∀ {n i j} k l → toℕ i ≤ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≤ toℕ (inject₁ⁱ> {n} {j} l)
inject₁ⁱ>-mono {i = i} {j} k l i≤j = begin
toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩
toℕ i ≤⟨ i≤j ⟩
toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩
toℕ (inject₁ⁱ> l) ∎
where open ≤-Reasoning
inject₁ⁱ>-cong :
∀ {n i j} k l → toℕ i ≡ toℕ j → toℕ (inject₁ⁱ> {n} {i} k) ≡ toℕ (inject₁ⁱ> {n} {j} l)
inject₁ⁱ>-cong {i = i} {j} k l i≡j = begin
toℕ (inject₁ⁱ> k) ≡⟨ toℕ-inject₁ⁱ> k ⟩
toℕ i ≡⟨ i≡j ⟩
toℕ j ≡˘⟨ toℕ-inject₁ⁱ> l ⟩
toℕ (inject₁ⁱ> l) ∎
where open ≡-Reasoning
------------------------------------------------------------------------
-- Properties of punchIn>
------------------------------------------------------------------------
toℕ-punchIn> : ∀ {n i} j k → toℕ> (punchIn> {suc n} {i} j k) ≡ toℕ (punchIn (raise!> j) (raise!> k))
toℕ-punchIn> {_} {zero} zero k = sym (cong suc (toℕ-raise!> k))
toℕ-punchIn> {_} {zero} (suc j) zero = refl
toℕ-punchIn> {_} {zero} (suc j) (suc k) = cong suc (toℕ-punchIn> j k)
toℕ-punchIn> {suc _} {suc i} (inj j) (inj k) = cong suc (toℕ-punchIn> j k)
------------------------------------------------------------------------
-- Properties of punchOut>
------------------------------------------------------------------------
toℕ-punchOut> : ∀ {n i j k} j≢k → toℕ> (punchOut> {suc n} {i} {j} {k} j≢k) ≡ toℕ (punchOut j≢k)
toℕ-punchOut> {_} {_} {zero} {zero} j≢k = ⊥-elim (j≢k refl)
toℕ-punchOut> {_} {_} {zero} {suc k} j≢k = sym (toℕ-raise!> k)
toℕ-punchOut> {suc _} {_} {suc j} {zero} j≢k = refl
toℕ-punchOut> {suc _} {_} {suc zero} {suc k} j≢k =
cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
toℕ-punchOut> {suc _} {_} {suc (suc j)} {suc k} j≢k =
cong suc (toℕ-punchOut> {j = suc j} (j≢k ∘ cong suc))
toℕ-punchOut> {suc _} {suc zero} {inj j} {inj k} j≢k =
cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
toℕ-punchOut> {suc _} {suc (suc _)} {inj j} {inj k} j≢k =
cong suc (toℕ-punchOut> (j≢k ∘ cong suc))
------------------------------------------------------------------------
-- Properties of reflect!
------------------------------------------------------------------------
toℕ-reflect! : ∀ {n i} j k → toℕ> (reflect! {n} {i} j k) ≡ toℕ< j
toℕ-reflect! {suc _} zero zero = refl
toℕ-reflect! {suc (suc _)} {suc _} (suc j) zero = cong suc (toℕ-reflect! j zero)
toℕ-reflect! {suc (suc _)} {suc _} (suc j) (suc k) = cong suc (toℕ-reflect! j k)
------------------------------------------------------------------------
-- Properties of reflect
------------------------------------------------------------------------
toℕ-reflect : ∀ {n i} j k → toℕ> (reflect {n} {i} j k) ≡ toℕ< j
toℕ-reflect {suc (suc _)} zero zero = refl
toℕ-reflect {_} {suc (suc _)} (suc j) zero = cong suc (toℕ-reflect j zero)
toℕ-reflect {_} {suc (suc _)} (suc j) (suc k) = cong suc (toℕ-reflect j k)
------------------------------------------------------------------------
-- Other properties
------------------------------------------------------------------------
inj-punchOut :
∀ {n i j k} → (j≢k : inject!< {suc n} {suc i} j ≢ raise!> (inj {suc n} {i} k)) →
toℕ (punchOut j≢k) ≡ toℕ> k
inj-punchOut {j = zero} {k} j≢k = toℕ-raise!> k
inj-punchOut {suc n} {j = suc j} {inj k} j≢k = cong suc (inj-punchOut (j≢k ∘ cong suc))
|