1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
|
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Cfe.Judgement.Properties
{c ℓ} (over : Setoid c ℓ)
where
open import Cfe.Context over as C
hiding
( shift≤ ; wkn₁ ; wkn₂ )
renaming (_≋_ to _≋ᶜ_; ≋-sym to ≋ᶜ-sym; ≋-trans to ≋ᶜ-trans )
open import Cfe.Expression over as E
open import Cfe.Judgement.Base over
open import Cfe.Language over
open import Cfe.Type over
open import Cfe.Type.Construct.Lift over
open import Data.Empty
open import Data.Fin as F hiding (splitAt)
open import Data.Fin.Properties hiding (≤-refl; ≤-trans; ≤-irrelevant)
open import Data.Nat as ℕ hiding (_⊔_)
open import Data.Nat.Properties renaming (≤-refl to ≤ⁿ-refl; ≤-trans to ≤ⁿ-trans; ≤-irrelevant to ≤ⁿ-irrelevant)
open import Data.Product
open import Data.Vec
open import Data.Vec.Properties
import Data.Vec.Relation.Binary.Pointwise.Extensional as PW
open import Function
open import Level renaming (suc to lsuc)
open import Relation.Binary.PropositionalEquality hiding (subst₂)
open import Relation.Nullary
private
toℕ-punchIn : ∀ {n} i j → toℕ j ℕ.≤ toℕ (punchIn {n} i j)
toℕ-punchIn zero j = n≤1+n (toℕ j)
toℕ-punchIn (suc i) zero = ≤ⁿ-refl
toℕ-punchIn (suc i) (suc j) = s≤s (toℕ-punchIn i j)
punchIn[i,j]≥m : ∀ {n m i j} → toℕ i ℕ.≤ m → toℕ j ≥ m → toℕ (punchIn {n} i j) ≥ suc m
punchIn[i,j]≥m {i = zero} i≤m j≥m = s≤s j≥m
punchIn[i,j]≥m {i = suc i} {suc j} (s≤s i≤m) (s≤s j≥m) = s≤s (punchIn[i,j]≥m i≤m j≥m)
congᶜ : ∀ {n} {Γ,Δ Γ,Δ′ : Context n} {e τ} → Γ,Δ ≋ᶜ Γ,Δ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ′ ⊢ e ∶ τ
congᶜ {Γ,Δ = Γ,Δ} {Γ,Δ′} (refl , refl , refl) Γ,Δ⊢e∶τ with ≤ⁿ-irrelevant (Context.m≤n Γ,Δ) (Context.m≤n Γ,Δ′)
... | refl = Γ,Δ⊢e∶τ
congᵗ : ∀ {n} {Γ,Δ : Context n} {e τ τ′} → τ ≡ τ′ → Γ,Δ ⊢ e ∶ τ → Γ,Δ ⊢ e ∶ τ′
congᵗ refl Γ,Δ⊢e∶τ = Γ,Δ⊢e∶τ
wkn₁ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ {i} i≥m τ′ → C.wkn₁ {i = i} Γ,Δ i≥m τ′ ⊢ wkn e i ∶ τ
wkn₁ Eps i≥m τ′ = Eps
wkn₁ (Char c) i≥m τ′ = Char c
wkn₁ Bot i≥m τ′ = Bot
wkn₁ {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = j} j≥m) {i = i} i≥m τ′ =
congᵗ (τ≡τ′ Γ m≤n i≥m j≥m τ′) (Var (≤ⁿ-trans j≥m (toℕ-punchIn i j)))
where
τ≡τ′ : ∀ {a A n m i j} xs (m≤n : m ℕ.≤ n) (i≥m : toℕ i ≥ _) j≥m x →
lookup {a} {A}
(insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) x)
(reduce≥′ (≤-step m≤n) (≤ⁿ-trans j≥m (toℕ-punchIn i j))) ≡
lookup xs (reduce≥′ m≤n j≥m)
τ≡τ′ {i = zero} {j} (y ∷ xs) z≤n z≤n z≤n x = refl
τ≡τ′ {i = suc i} {zero} (y ∷ xs) z≤n z≤n z≤n x = refl
τ≡τ′ {i = suc i} {suc j} (y ∷ xs) z≤n z≤n z≤n x = τ≡τ′ {i = i} xs z≤n z≤n z≤n x
τ≡τ′ {i = suc i} {suc j} xs (s≤s m≤n) (s≤s i≥m) (s≤s j≥m) x = τ≡τ′ xs m≤n i≥m j≥m x
wkn₁ (Fix Γ,Δ⊢e∶τ) i≥m τ′ = Fix (wkn₁ Γ,Δ⊢e∶τ (s≤s i≥m) τ′)
wkn₁ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i≥m τ′ = Cat (wkn₁ Γ,Δ⊢e₁∶τ₁ i≥m τ′) (congᶜ (≋ᶜ-sym (shift≤-wkn₁-comm Γ,Δ z≤n i≥m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ z≤n τ′)) τ₁⊛τ₂
wkn₁ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i≥m τ′ = Vee (wkn₁ Γ,Δ⊢e₁∶τ₁ i≥m τ′) (wkn₁ Γ,Δ⊢e₂∶τ₂ i≥m τ′) τ₁#τ₂
wkn₂ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ {i} i≤m τ′ → C.wkn₂ {i = i} Γ,Δ i≤m τ′ ⊢ wkn e i ∶ τ
wkn₂ Eps i≤m τ′ = Eps
wkn₂ (Char c) i≤m τ′ = Char c
wkn₂ Bot i≤m τ′ = Bot
wkn₂ {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }}(Var {i = j} j≥m) i≤m τ′ = congᵗ (τ≡τ′ Γ m≤n i≤m j≥m) (Var (punchIn[i,j]≥m i≤m j≥m))
where
τ≡τ′ : ∀ {a A n m i j} xs (m≤n : m ℕ.≤ n) (i≤m : toℕ i ℕ.≤ _) (j≥m : toℕ j ≥ _) →
lookup {a} {A} xs (reduce≥′ (s≤s m≤n) (punchIn[i,j]≥m i≤m j≥m)) ≡
lookup xs (reduce≥′ m≤n j≥m)
τ≡τ′ {i = zero} _ z≤n _ _ = refl
τ≡τ′ {i = zero} _ (s≤s _) _ _ = refl
τ≡τ′ {i = suc i} {suc j} xs (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) = τ≡τ′ xs m≤n i≤m j≥m
wkn₂ (Fix Γ,Δ⊢e∶τ) i≤m τ′ = Fix (wkn₂ Γ,Δ⊢e∶τ (s≤s i≤m) τ′)
wkn₂ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i≤m τ′ = Cat (wkn₂ Γ,Δ⊢e₁∶τ₁ i≤m τ′) (congᶜ (≋ᶜ-sym (shift≤-wkn₂-comm-≤ Γ,Δ z≤n i≤m τ′)) (wkn₁ Δ++Γ,∙⊢e₂∶τ₂ z≤n τ′)) τ₁⊛τ₂
wkn₂ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i≤m τ′ = Vee (wkn₂ Γ,Δ⊢e₁∶τ₁ i≤m τ′) (wkn₂ Γ,Δ⊢e₂∶τ₂ i≤m τ′) τ₁#τ₂
shift≤ : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ {i} (i≤m : i ℕ.≤ _) → C.shift≤ Γ,Δ i≤m ⊢ e ∶ τ
shift≤ Eps i≤m = Eps
shift≤ (Char c) i≤m = Char c
shift≤ Bot i≤m = Bot
shift≤ {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} (Var {i = j} j≥m) i≤m =
congᵗ (τ≡τ′ Γ Δ m≤n i≤m j≥m) (Var (≤ⁿ-trans i≤m j≥m))
where
τ≡τ′ : ∀ {a A n m i j} xs ys (m≤n : m ℕ.≤ n) (i≤m : i ℕ.≤ m) (j≥m : toℕ j ≥ m) →
lookup {a} {A} (drop′ m≤n i≤m (ys ++ xs)) (reduce≥′ (≤ⁿ-trans i≤m m≤n) (≤ⁿ-trans i≤m j≥m)) ≡
lookup xs (reduce≥′ m≤n j≥m)
τ≡τ′ xs [] z≤n z≤n z≤n = refl
τ≡τ′ {j = suc j} xs (x ∷ ys) (s≤s m≤n) z≤n (s≤s j≥m) = τ≡τ′ xs ys m≤n z≤n j≥m
τ≡τ′ {j = suc j} xs (x ∷ ys) (s≤s m≤n) (s≤s i≤m) (s≤s j≥m) = τ≡τ′ xs ys m≤n i≤m j≥m
shift≤ {Γ,Δ = Γ,Δ} {τ = τ} (Fix Γ,Δ⊢e∶τ) {i} i≤m = Fix (congᶜ (shift≤-wkn₂-comm-> Γ,Δ z≤n i≤m τ) (shift≤ Γ,Δ⊢e∶τ (s≤s i≤m)))
shift≤ {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) i≤m =
Cat (shift≤ Γ,Δ⊢e₁∶τ₁ i≤m)
(congᶜ (≋ᶜ-trans (shift≤-identity (shift Γ,Δ))
(≋ᶜ-sym (shift≤-idem Γ,Δ z≤n i≤m)))
(shift≤ Δ++Γ,∙⊢e₂∶τ₂ z≤n))
τ₁⊛τ₂
shift≤ (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) i≤m = Vee (shift≤ Γ,Δ⊢e₁∶τ₁ i≤m) (shift≤ Γ,Δ⊢e₂∶τ₂ i≤m) τ₁#τ₂
subst₁ : ∀ {n} {Γ,Δ : Context n} {e τ i τ′} (i≥m : toℕ i ≥ _) → C.wkn₁ Γ,Δ i≥m τ′ ⊢ e ∶ τ → ∀ {e′} → Γ,Δ ⊢ e′ ∶ τ′ → Γ,Δ ⊢ e [ e′ / i ] ∶ τ
subst₁ _ Eps Γ,Δ⊢e′∶τ′ = Eps
subst₁ _ (Char c) Γ,Δ⊢e′∶τ′ = Char c
subst₁ _ Bot Γ,Δ⊢e′∶τ′ = Bot
subst₁ {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} {i = i} {τ′} i≥m (Var {i = j} j≥m) Γ,Δ⊢e′∶τ′ with i F.≟ j
... | no i≢j =
congᵗ (sym (τ≡τ′ Γ m≤n i≢j i≥m j≥m τ′)) (Var (punchOut≥m i≢j i≥m j≥m))
where
punchOut≥m : ∀ {n m i j} → (i≢j : i ≢ j) → toℕ {suc n} i ≥ m → toℕ j ≥ m → toℕ (punchOut i≢j) ≥ m
punchOut≥m {m = zero} _ z≤n _ = z≤n
punchOut≥m {n = suc _} {.(suc _)} {suc _} {suc _} i≢j (s≤s i≥m) (s≤s j≥m) = s≤s (punchOut≥m (i≢j ∘ cong suc) i≥m j≥m)
τ≡τ′ : ∀ {a A n m i j} xs (m≤n : m ℕ.≤ n) (i≢j : i ≢ j) (i≥m : toℕ i ≥ m) (j≥m : toℕ j ≥ m) x →
lookup {a} {A} (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) x) (reduce≥′ (≤-step m≤n) j≥m) ≡
lookup xs (reduce≥′ m≤n (punchOut≥m i≢j i≥m j≥m))
τ≡τ′ {i = zero} {zero} xs m≤n i≢j i≥m j≥m x = ⊥-elim (i≢j refl)
τ≡τ′ {n = suc n} {i = zero} {suc j} xs z≤n i≢j z≤n z≤n x = refl
τ≡τ′ {n = suc n} {i = suc i} {zero} (y ∷ xs) z≤n i≢j z≤n z≤n x = refl
τ≡τ′ {n = suc n} {i = suc i} {suc j} (y ∷ xs) z≤n i≢j z≤n z≤n x = τ≡τ′ xs z≤n (i≢j ∘ cong suc) z≤n z≤n x
τ≡τ′ {n = suc n} {i = suc i} {suc j} xs (s≤s m≤n) i≢j (s≤s i≥m) (s≤s j≥m) x = τ≡τ′ xs m≤n (i≢j ∘ cong suc) i≥m j≥m x
... | yes refl with ≤ⁿ-irrelevant i≥m j≥m
... | refl = congᵗ (sym (τ≡τ′ Γ m≤n i≥m τ′)) Γ,Δ⊢e′∶τ′
where
τ≡τ′ : ∀ {a A n m i} xs (m≤n : m ℕ.≤ n) (i≥m : toℕ i ≥ m) x →
lookup {a} {A} (insert′ xs (s≤s m≤n) (reduce≥′ (≤-step m≤n) i≥m) x) (reduce≥′ (≤-step m≤n) i≥m) ≡ x
τ≡τ′ {i = zero} xs z≤n z≤n x = refl
τ≡τ′ {i = suc i} (y ∷ xs) z≤n z≤n x = insert-lookup xs i x
τ≡τ′ {i = suc i} xs (s≤s m≤n) (s≤s i≥m) = τ≡τ′ xs m≤n i≥m
subst₁ {τ = τ} i≥m (Fix Γ,Δ⊢e∶τ) Γ,Δ⊢e′∶τ′ = Fix (subst₁ (s≤s i≥m) Γ,Δ⊢e∶τ (wkn₂ Γ,Δ⊢e′∶τ′ z≤n τ))
subst₁ {Γ,Δ = Γ,Δ} {i = i} {τ′} i≥m (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) Γ,Δ⊢e′∶τ′ = Cat (subst₁ i≥m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′) (subst₁ z≤n (congᶜ (shift≤-wkn₁-comm Γ,Δ z≤n i≥m τ′) Δ++Γ,∙⊢e₂∶τ₂) (shift≤ Γ,Δ⊢e′∶τ′ z≤n)) τ₁⊛τ₂
subst₁ i≥m (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) Γ,Δ⊢e′∶τ′ = Vee (subst₁ i≥m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′) (subst₁ i≥m Γ,Δ⊢e₂∶τ₂ Γ,Δ⊢e′∶τ′) τ₁#τ₂
subst₂ : ∀ {n} {Γ,Δ : Context n} {e τ i τ′} (i≤m : toℕ i ℕ.≤ _) → C.wkn₂ Γ,Δ i≤m τ′ ⊢ e ∶ τ → ∀ {e′} → shift Γ,Δ ⊢ e′ ∶ τ′ → Γ,Δ ⊢ e [ e′ / i ] ∶ τ
subst₂ i≤m Eps Γ,Δ⊢e′∶τ′ = Eps
subst₂ i≤m (Char c) Γ,Δ⊢e′∶τ′ = Char c
subst₂ i≤m Bot Γ,Δ⊢e′∶τ′ = Bot
subst₂ {Γ,Δ = record { m = m ; m≤n = m≤n ; Γ = Γ ; Δ = Δ }} {i = i} i≤m (Var {i = j} j>m) Γ,Δ⊢e′∶τ′ with i F.≟ j
... | yes refl = ⊥-elim (<⇒≱ j>m i≤m)
... | no i≢j = congᵗ (cong (lookup Γ) (τ≡τ′ m≤n i≢j i≤m j>m)) (Var (punchOut≥m i≢j i≤m j>m))
where
punchOut≥m : ∀ {n m i j} → (i≢j : i ≢ j) → toℕ {suc n} i ℕ.≤ m → toℕ j > m → toℕ (punchOut i≢j) ≥ m
punchOut≥m {m = zero} i≢j i≤m j>m = z≤n
punchOut≥m {m = suc _} {zero} {suc _} _ _ (s≤s j>m) = j>m
punchOut≥m {n = suc _} {i = suc _} {suc _} i≢j (s≤s i≤m) (s≤s j>m) = s≤s (punchOut≥m (i≢j ∘ cong suc) i≤m j>m)
τ≡τ′ : ∀ {n m i j} (m≤n : m ℕ.≤ n) (i≢j : i ≢ j) (i≤m : toℕ i ℕ.≤ m) (j>m : toℕ j > m) →
reduce≥′ m≤n (punchOut≥m i≢j i≤m j>m) ≡ reduce≥′ (s≤s m≤n) j>m
τ≡τ′ {m = zero} {zero} {suc _} m≤n i≢j z≤n (s≤s z≤n) = refl
τ≡τ′ {m = suc _} {zero} {suc _} m≤n i≢j z≤n (s≤s j>m) = refl
τ≡τ′ {n = suc _} {i = suc _} {suc _} (s≤s m≤n) i≢j (s≤s i≤m) (s≤s j>m) = τ≡τ′ m≤n (i≢j ∘ cong suc) i≤m j>m
subst₂ {Γ,Δ = Γ,Δ} {τ = τ} {τ′ = τ′} i≤m (Fix Γ,Δ⊢e∶τ) Γ,Δ⊢e′∶τ′ =
Fix (subst₂ (s≤s i≤m)
(congᶜ (≋ᶜ-sym (wkn₂-comm Γ,Δ z≤n i≤m τ τ′)) Γ,Δ⊢e∶τ)
(congᶜ (≋ᶜ-sym (shift≤-wkn₂-comm-≤ Γ,Δ z≤n z≤n τ)) (wkn₁ Γ,Δ⊢e′∶τ′ z≤n τ)))
subst₂ {Γ,Δ = Γ,Δ} {τ′ = τ′} i≤m (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) Γ,Δ⊢e′∶τ′ =
Cat (subst₂ i≤m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′)
(subst₁ z≤n
(congᶜ (shift≤-wkn₂-comm-≤ Γ,Δ z≤n i≤m τ′) Δ++Γ,∙⊢e₂∶τ₂)
Γ,Δ⊢e′∶τ′)
τ₁⊛τ₂
subst₂ i≤m (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) Γ,Δ⊢e′∶τ′ = Vee (subst₂ i≤m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′) (subst₂ i≤m Γ,Δ⊢e₂∶τ₂ Γ,Δ⊢e′∶τ′) τ₁#τ₂
soundness : ∀ {n} {Γ,Δ : Context n} {e τ} → Γ,Δ ⊢ e ∶ τ → ∀ γ → PW.Pointwise _⊨_ γ (toVec Γ,Δ) → ⟦ e ⟧ γ ⊨ τ
soundness Eps γ γ⊨Γ,Δ = ⊨-liftˡ ℓ (⊨-liftʳ ℓ ℓ ({ε}⊨τε))
soundness (Char c) γ γ⊨Γ,Δ = ⊨-liftˡ ℓ (⊨-liftʳ ℓ ℓ ({c}⊨τ[c] c))
soundness Bot γ γ⊨Γ,Δ = ⊨-liftˡ (c ⊔ ℓ) (⊨-liftʳ ℓ ℓ (∅⊨τ⊥))
soundness {Γ,Δ = Γ,Δ} (Var {i = i} i≥m) γ γ⊨Γ,Δ = subst (⟦ Var i ⟧ γ ⊨_) (sym (τ≡τ′ Γ,Δ i≥m)) (PW.Pointwise.app γ⊨Γ,Δ i)
where
τ≡τ′ : ∀ {n i} (Γ,Δ : Context n) i≥m → lookup (Context.Γ Γ,Δ) (reduce≥′ {i = i} (Context.m≤n Γ,Δ) i≥m) ≡ lookup (toVec Γ,Δ) i
τ≡τ′ {.(suc _)} record { m = .0 ; m≤n = z≤n ; Γ = (x ∷ Γ) ; Δ = [] } i≥m = refl
τ≡τ′ {.(suc _)} {suc i} record { m = .(suc _) ; m≤n = (s≤s m≤n) ; Γ = Γ ; Δ = (x ∷ Δ) } (s≤s i≥m) =
τ≡τ′ (record { m≤n = m≤n ; Γ = Γ ; Δ = Δ}) i≥m
soundness (Fix {e = e} Γ,Δ⊢e∶τ) γ γ⊨Γ,Δ =
⋃-⊨ (λ L≤L′ → mono e (PW.extensional⇒inductive (PW.ext (λ { F.zero → L≤L′ ; (suc _) → ≤-refl }))))
(λ {L} L⊨τ → soundness Γ,Δ⊢e∶τ (L ∷ γ) (PW.ext (λ { zero → L⊨τ ; (suc i) → PW.Pointwise.app γ⊨Γ,Δ i })))
soundness {Γ,Δ = Γ,Δ} (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) γ γ⊨Γ,Δ =
∙-⊨ (soundness Γ,Δ⊢e₁∶τ₁ γ γ⊨Γ,Δ)
(soundness Δ++Γ,∙⊢e₂∶τ₂ γ (subst (PW.Pointwise _⊨_ γ) (sym (shift≤-toVec Γ,Δ z≤n)) γ⊨Γ,Δ))
τ₁⊛τ₂
soundness (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) γ γ⊨Γ,Δ =
∪-⊨ (soundness Γ,Δ⊢e₁∶τ₁ γ γ⊨Γ,Δ)
(soundness Γ,Δ⊢e₂∶τ₂ γ γ⊨Γ,Δ)
τ₁#τ₂
subst-preserves-rank : ∀ {n} {Γ,Δ : Context n} {e τ i τ′} (i≤m : toℕ i ℕ.≤ _) →
C.wkn₂ Γ,Δ i≤m τ′ ⊢ e ∶ τ →
∀ {e′} → shift Γ,Δ ⊢ e′ ∶ τ′ →
rank (e [ e′ / i ]) ≡ rank e
subst-preserves-rank i≤m Eps Γ,Δ⊢e′∶τ′ = refl
subst-preserves-rank i≤m (Char c) Γ,Δ⊢e′∶τ′ = refl
subst-preserves-rank i≤m Bot Γ,Δ⊢e′∶τ′ = refl
subst-preserves-rank {i = i} i≤m (Var {i = j} j>m) Γ,Δ⊢e′∶τ′ with i F.≟ j
... | yes refl = ⊥-elim (<⇒≱ j>m i≤m)
... | no i≢j = refl
subst-preserves-rank {Γ,Δ = Γ,Δ} {τ = τ} {τ′ = τ′} i≤m (Fix Γ,Δ⊢e∶τ) Γ,Δ⊢e′∶τ′ =
cong suc (subst-preserves-rank {Γ,Δ = cons Γ,Δ τ} (s≤s i≤m)
(congᶜ (≋ᶜ-sym (wkn₂-comm Γ,Δ z≤n i≤m τ τ′)) Γ,Δ⊢e∶τ)
(congᶜ (≋ᶜ-sym (shift≤-wkn₂-comm-≤ Γ,Δ z≤n z≤n τ)) (wkn₁ Γ,Δ⊢e′∶τ′ z≤n τ)))
subst-preserves-rank i≤m (Cat Γ,Δ⊢e₁∶τ₁ Δ++Γ,∙⊢e₂∶τ₂ τ₁⊛τ₂) Γ,Δ⊢e′∶τ′ =
cong suc (subst-preserves-rank i≤m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′)
subst-preserves-rank i≤m (Vee Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e₂∶τ₂ τ₁#τ₂) Γ,Δ⊢e′∶τ′ =
cong₂ (λ x y → suc (x ℕ.+ y))
(subst-preserves-rank i≤m Γ,Δ⊢e₁∶τ₁ Γ,Δ⊢e′∶τ′)
(subst-preserves-rank i≤m Γ,Δ⊢e₂∶τ₂ Γ,Δ⊢e′∶τ′)
|