summaryrefslogtreecommitdiff
path: root/src/Cfe/Judgement/Properties.agda
blob: 760d81456f383d3b3b777213d99b2cbae4746f0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
{-# OPTIONS --without-K --safe #-}

open import Relation.Binary using (Setoid)

module Cfe.Judgement.Properties
  {c ℓ} (over : Setoid c ℓ)
  where

open import Cfe.Context over renaming (wkn₁ to wkn₁ᶜ; wkn₂ to wkn₂ᶜ; shift to shiftᶜ)
open import Cfe.Fin
open import Cfe.Expression over
open import Cfe.Judgement.Base over
open import Cfe.Language over using (⊆-refl)
open import Cfe.Type over
  using (Type; τ⊥; _⊨_; ⊨-min; ⊨-fix; {ε}⊨τε; {c}⊨τ[c]; ⊛⇒∙-pres-⊨; #⇒∨-pres-⊨)
  renaming (_≈_ to _≈ᵗ_; ≈-refl to ≈ᵗ-refl)
open import Data.Empty using (⊥-elim)
open import Data.Fin using (zero; suc; toℕ; inject₁; punchIn; punchOut) renaming (_≤_ to _≤ᶠ_)
open import Data.Fin.Properties using (_≟_; toℕ-injective; toℕ-inject₁)
open import Data.Nat using (ℕ; suc; z≤n; _+_) renaming (_≤_ to _≤ⁿ_)
open import Data.Nat.Properties using (pred-mono; <⇒≤pred; <⇒≢; module ≤-Reasoning)
open import Data.Vec using (Vec; _∷_; lookup; insert; remove)
open import Data.Vec.Properties using (insert-punchIn; remove-punchOut)
open import Data.Vec.Relation.Binary.Pointwise.Inductive as Pw using (Pointwise; _∷_)
open import Function using (_|>_; _∘_; _∘₂_; flip)
open import Relation.Binary.PropositionalEquality as ≡ hiding (subst₂)
open import Relation.Nullary

private
  variable
    n : ℕ
    ctx ctx₁ ctx₂ : Context n
    τ τ′ : Type ℓ ℓ

  punchIn< : ∀ {n i j} → toℕ i ≤ⁿ toℕ j → punchIn {n} i j ≡ suc j
  punchIn< {i = zero} {j} i≤j = refl
  punchIn< {i = suc i} {suc j} i≤j = cong suc (punchIn< (pred-mono i≤j))

wkn₁ : ∀ {e} → ctx ⊢ e ∶ τ → ∀ i τ′ → wkn₁ᶜ ctx i τ′ ⊢ wkn e (raise!> i) ∶ τ
wkn₁ Eps      i τ′ = Eps
wkn₁ (Char c) i τ′ = Char c
wkn₁ Bot      i τ′ = Bot
wkn₁ {ctx = Γ,Δ ⊐ g} (Var j) i τ′ =
  ≡.subst₂ (wkn₁ᶜ (Γ,Δ ⊐ g) i τ′ ⊢_∶_) (cong Var eqⁱ) eqᵗ (Var (punchIn> i j))
  where
  open ≡-Reasoning
  lookup′ = lookup (insert Γ,Δ (raise!> i) τ′)
  eqⁱ = toℕ-injective (begin
    toℕ (raise!> (punchIn> i j))         ≡⟨ toℕ-raise!> (punchIn> i j) ⟩
    toℕ> (punchIn> i j)                 ≡⟨ toℕ-punchIn> i j ⟩
    toℕ (punchIn (raise!> i) (raise!> j)) ∎)
  eqᵗ = begin
    lookup′ (raise!> (punchIn> i j))         ≡⟨ cong (lookup (insert Γ,Δ (raise!> i) τ′)) eqⁱ ⟩
    lookup′ (punchIn (raise!> i) (raise!> j)) ≡⟨ insert-punchIn Γ,Δ (raise!> i) τ′ (raise!> j) ⟩
    lookup Γ,Δ (raise!> j)                   ∎
wkn₁ {ctx = ctx} {τ} {μ e} (Fix ctx⊢e∶τ) i τ′ =
  Fix (subst
    (_⊢ wkn e (suc (raise!> i)) ∶ τ)
    (sym (wkn₁-wkn₂-comm ctx i zero τ′ τ))
    (wkn₁ ctx⊢e∶τ (inj i) τ′))
wkn₁ {ctx = ctx} {e = _ ∙ e₂} (Cat {τ₂ = τ₂} ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ =
  Cat
    (wkn₁ ctx⊢e₁∶τ₁ i τ′)
    (≡.subst₂
      (_⊢_∶ τ₂)
      (sym (shift-wkn₁-comm ctx zero i τ′))
      (toℕ-cast> z≤n i |> raise!>-cong |> toℕ-injective |> cong (wkn e₂))
      (wkn₁ ctx⊢e₂∶τ₂ (cast> z≤n i) τ′))
    τ₁⊛τ₂
wkn₁ (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) i τ′ = Vee (wkn₁ ctx⊢e₁∶τ₁ i τ′) (wkn₁ ctx⊢e₂∶τ₂ i τ′) τ₁#τ₂

wkn₂ : ∀ {e} → ctx ⊢ e ∶ τ → ∀ i τ′ → wkn₂ᶜ ctx i τ′ ⊢ wkn e (inject!< i) ∶ τ
wkn₂ Eps      i τ′ = Eps
wkn₂ (Char c) i τ′ = Char c
wkn₂ Bot      i τ′ = Bot
wkn₂ {ctx = Γ,Δ ⊐ g} (Var j) i τ′ =
  ≡.subst₂ (wkn₂ᶜ (Γ,Δ ⊐ g) i τ′ ⊢_∶_) (cong Var eqⁱ) eqᵗ (Var (inj j))
  where
  lookup′ = lookup (insert Γ,Δ (inject!< i) τ′)
  eqⁱ = sym (punchIn< (begin
    toℕ (inject!< i)  ≡⟨ toℕ-inject!< i ⟩
    toℕ< i            ≤⟨ <⇒≤pred (toℕ<<i i) ⟩
    toℕ g             ≤⟨ toℕ>≥i j ⟩
    toℕ> j            ≡˘⟨ toℕ-raise!> j ⟩
    toℕ (raise!> j)    ∎))
    where open ≤-Reasoning
  eqᵗ = begin
    lookup′ (raise!> (inj j))                  ≡⟨ cong lookup′ eqⁱ ⟩
    lookup′ (punchIn (inject!< i) (raise!> j)) ≡⟨ insert-punchIn Γ,Δ (inject!< i) τ′ (raise!> j) ⟩
    lookup Γ,Δ (raise!> j)                     ∎
    where open ≡-Reasoning
wkn₂ {ctx = ctx} {τ} {μ e} (Fix ctx⊢e∶τ) i τ′ =
  Fix (subst
    (_⊢ wkn e (inject!< (suc i)) ∶ τ)
    (wkn₂-comm ctx i zero τ′ τ)
    (wkn₂ ctx⊢e∶τ (suc i) τ′))
wkn₂ {ctx = ctx} {e = _ ∙ e₂} (Cat {τ₂ = τ₂} ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) i τ′ =
  Cat
    (wkn₂ ctx⊢e₁∶τ₁ i τ′)
    (≡.subst₂
      (_⊢_∶ τ₂)
      (sym (shift-wkn₁-wkn₂-comm ctx i zero τ′))
      (cong (wkn e₂) (toℕ-injective (begin
        toℕ (raise!> (reflect! i zero)) ≡⟨ toℕ-raise!> (reflect! i zero) ⟩
        toℕ> (reflect! i zero)          ≡⟨ toℕ-reflect! i zero ⟩
        toℕ< i                          ≡˘⟨ toℕ-inject!< i ⟩
        toℕ (inject!< i)                ∎)))
      (wkn₁ ctx⊢e₂∶τ₂ (reflect! i zero) τ′))
    τ₁⊛τ₂
  where open ≡-Reasoning
wkn₂ (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) i τ′ = Vee (wkn₂ ctx⊢e₁∶τ₁ i τ′) (wkn₂ ctx⊢e₂∶τ₂ i τ′) τ₁#τ₂

shift : ∀ {e} → ctx ⊢ e ∶ τ → ∀ i → shiftᶜ ctx i ⊢ e ∶ τ
shift Eps      i = Eps
shift (Char c) i = Char c
shift Bot      i = Bot
shift {ctx = Γ,Δ ⊐ g} {τ} (Var j) i =
  ≡.subst₂
    (Γ,Δ ⊐ inject!< i ⊢_∶_)
    (toℕ-cast> i≤g j |> raise!>-cong |> toℕ-injective |> cong Var)
    (toℕ-cast> i≤g j |> raise!>-cong |> toℕ-injective |> cong (lookup Γ,Δ))
    (Var (cast> i≤g j))
  where
  i≤g : inject!< i ≤ᶠ g
  i≤g = begin
    toℕ (inject!< i) ≡⟨ toℕ-inject!< i ⟩
    toℕ< i           ≤⟨ <⇒≤pred (toℕ<<i i) ⟩
    toℕ g            ∎
    where open ≤-Reasoning
shift {ctx = ctx} {τ} {μ e} (Fix ctx⊢e∶τ) i =
  Fix (subst (_⊢ e ∶ τ) (shift-wkn₂-comm ctx i zero τ) (shift ctx⊢e∶τ (suc i)))
shift {ctx = ctx} {_} {_ ∙ e₂} (Cat {τ₂ = τ₂} ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) i =
  Cat
    (shift ctx⊢e₁∶τ₁ i)
    (subst (_⊢ e₂ ∶ τ₂) (sym (shift-trans ctx i zero)) ctx⊢e₂∶τ₂)
    τ₁⊛τ₂
shift (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) i = Vee (shift ctx⊢e₁∶τ₁ i) (shift ctx⊢e₂∶τ₂ i) τ₁#τ₂

subst₁ :
  ∀ {e} → ctx ⊢ e ∶ τ →
  ∀ i {e′} → remove₁ ctx i ⊢ e′ ∶ lookup (Γ,Δ ctx) (raise!> i) →
  remove₁ ctx i ⊢ e [ e′ / raise!> i ] ∶ τ
subst₁ Eps      i ctx⊢e′∶τ′ = Eps
subst₁ (Char c) i ctx⊢e′∶τ′ = Char c
subst₁ Bot      i ctx⊢e′∶τ′ = Bot
subst₁ {ctx = Γ,Δ ⊐ g} (Var j) i {e′} ctx⊢e′∶τ′ with raise!> i ≟ raise!> j
... | yes i≡j = subst (remove₁ (Γ,Δ ⊐ g) i ⊢ e′ ∶_) (cong (lookup Γ,Δ) i≡j) ctx⊢e′∶τ′
... | no i≢j  = ≡.subst₂ (remove₁ (Γ,Δ ⊐ g) i ⊢_∶_ ) (cong Var eqⁱ) eqᵗ (Var (punchOut> i≢j))
  where
  open ≡-Reasoning
  lookup′ = lookup (remove Γ,Δ (raise!> i))
  eqⁱ = toℕ-injective (begin
    toℕ (raise!> (punchOut> i≢j)) ≡⟨ toℕ-raise!> (punchOut> i≢j) ⟩
    toℕ> (punchOut> i≢j)          ≡⟨ toℕ-punchOut> i≢j ⟩
    toℕ (punchOut i≢j)            ∎)

  eqᵗ = begin
    lookup′ (raise!> (punchOut> i≢j)) ≡⟨ cong lookup′ eqⁱ ⟩
    lookup′ (punchOut i≢j)            ≡⟨ remove-punchOut Γ,Δ i≢j ⟩
    lookup Γ,Δ (raise!> j)            ∎
subst₁ {ctx = ctx} {τ} {μ e} (Fix ctx⊢e∶τ) i {e′} ctx⊢e′∶τ′ =
  Fix (subst
    (_⊢ e [ wkn e′ zero / suc (raise!> i) ] ∶ τ)
    (remove₁-wkn₂-comm ctx i zero τ)
    (subst₁
      ctx⊢e∶τ
      (inj i)
      (subst
        (_⊢ wkn e′ zero ∶ lookup (Γ,Δ ctx) (raise!> i))
        (sym (remove₁-wkn₂-comm ctx i zero τ))
        (wkn₂ ctx⊢e′∶τ′ zero τ))))
subst₁ {ctx = ctx} {_} {_ ∙ e₂} (Cat {τ₂ = τ₂} ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) i {e′} ctx⊢e′∶τ′ =
  Cat
    (subst₁ ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′)
    (≡.subst₂
      (_⊢_∶ τ₂ )
      (remove₁-shift-comm ctx zero i)
      (toℕ-cast> z≤n i |> raise!>-cong |> toℕ-injective |> cong (e₂ [ e′ /_]))
      (subst₁
        ctx⊢e₂∶τ₂
        (cast> z≤n i)
        (≡.subst₂ (_⊢ e′ ∶_)
          (sym (remove₁-shift-comm ctx zero i))
          (toℕ-cast> z≤n i |> raise!>-cong |> toℕ-injective |> cong (lookup (Γ,Δ ctx)) |> sym)
          (shift ctx⊢e′∶τ′ zero))))
    τ₁⊛τ₂
subst₁ (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) i ctx⊢e′∶τ′ =
  Vee (subst₁ ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′) (subst₁ ctx⊢e₂∶τ₂ i ctx⊢e′∶τ′) τ₁#τ₂

subst₂ :
  ∀ {e} → ctx ⊢ e ∶ τ →
  ∀ i {e′} → shiftᶜ (remove₂ ctx i) zero ⊢ e′ ∶ lookup (Γ,Δ ctx) (inject!< i) →
  remove₂ ctx i ⊢ e [ e′ / inject!< i ] ∶ τ
subst₂ Eps      i ctx⊢e′∶τ′ = Eps
subst₂ (Char c) i ctx⊢e′∶τ′ = Char c
subst₂ Bot      i ctx⊢e′∶τ′ = Bot
subst₂ {ctx = Γ,Δ ⊐ suc g} (Var (inj j)) i ctx⊢e′∶τ′ with inject!< i ≟ raise!> (inj j)
... | yes i≡j = ⊥-elim (flip <⇒≢ (cong toℕ i≡j) (begin-strict
  toℕ (inject!< i) ≡⟨ toℕ-inject!< i ⟩
  toℕ< i           <⟨ toℕ<<i i ⟩
  toℕ (suc g)      ≤⟨ toℕ>≥i (inj j) ⟩
  toℕ> (inj j)     ≡˘⟨ toℕ-raise!> (inj j) ⟩
  toℕ (raise!> (inj j))  ∎))
  where open ≤-Reasoning
... | no i≢j  = ≡.subst₂ (remove₂ (Γ,Δ ⊐ suc g) i ⊢_∶_ ) (cong Var eqⁱ) eqᵗ (Var j)
  where
  open ≡-Reasoning
  lookup′ = lookup (remove Γ,Δ (inject!< i))
  eqⁱ = trans (inj-punchOut i≢j) (sym (toℕ-raise!> j)) |> toℕ-injective |> sym
  eqᵗ = begin
    lookup′ (raise!> j)          ≡⟨ cong lookup′ eqⁱ ⟩
    lookup′ (punchOut i≢j)       ≡⟨ remove-punchOut Γ,Δ i≢j ⟩
    lookup Γ,Δ (raise!> (inj j)) ∎
subst₂ {n} {ctx = ctx @ (Γ,Δ ⊐ suc g)} {τ} {μ e} (Fix ctx⊢e∶τ) i {e′} ctx⊢e′∶τ′ =
  Fix (subst
    (_⊢ e [ wkn e′ zero / suc (inject!< i) ] ∶ τ)
    (remove₂-wkn₂-comm ctx i zero τ)
    (subst₂
      ctx⊢e∶τ
      (suc i)
      (subst
        (_⊢ wkn e′ zero ∶ lookup Γ,Δ (inject!< i))
        (begin
          wkn₁ᶜ (shiftᶜ (remove₂ ctx i) zero) zero τ       ≡˘⟨ shift-wkn₁-wkn₂-comm (remove₂ ctx i) zero zero τ ⟩
          shiftᶜ (wkn₂ᶜ (remove₂ ctx i) zero τ) zero       ≡˘⟨ shift-cong-≡ zero zero (remove₂-wkn₂-comm ctx i zero τ) ⟩
          shiftᶜ (remove₂ (wkn₂ᶜ ctx zero τ) (suc i)) zero ∎)
        (wkn₁ ctx⊢e′∶τ′ zero τ))))
  where open ≡-Reasoning
subst₂ {ctx = Γ,Δ ⊐ suc g} {_} {_ ∙ e₂} (Cat {τ₂ = τ₂} ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) i {e′} ctx⊢e′∶τ′ =
  Cat
    (subst₂ ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′)
    (≡.subst₂
      (_⊢_∶ τ₂)
      (remove₁-remove₂-shift-comm (Γ,Δ ⊐ suc g) i zero)
      (eqⁱ |> cong (e₂ [ e′ /_]))
      (subst₁
        ctx⊢e₂∶τ₂
        (cast> z≤n (reflect i zero))
        (≡.subst₂
          (_⊢ e′ ∶_)
          (sym (remove₁-remove₂-shift-comm (Γ,Δ ⊐ suc g) i zero))
          (eqⁱ |> cong (lookup Γ,Δ) |> sym)
          (shift ctx⊢e′∶τ′ zero))))
    τ₁⊛τ₂
  where
  open ≡-Reasoning
  eqⁱ = toℕ-injective (begin
    toℕ (raise!> (cast> _ (reflect i zero))) ≡⟨ toℕ-raise!> (cast> _ (reflect i zero)) ⟩
    toℕ> (cast> _ (reflect i zero))          ≡⟨ toℕ-cast> z≤n (reflect i zero) ⟩
    toℕ> (reflect i zero)                    ≡⟨ toℕ-reflect i zero ⟩
    toℕ< i                                   ≡˘⟨ toℕ-inject!< i ⟩
    toℕ (inject!< i)                         ∎)
subst₂ (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) i ctx⊢e′∶τ′ =
  Vee (subst₂ ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′) (subst₂ ctx⊢e₂∶τ₂ i ctx⊢e′∶τ′) τ₁#τ₂

soundness : ∀ {e} → ctx ⊢ e ∶ τ → ∀ γ → Pointwise _⊨_ γ (Γ,Δ ctx) → ⟦ e ⟧ γ ⊨ τ
soundness           Eps                             γ γ⊨Γ,Δ = {ε}⊨τε
soundness           (Char c)                        γ γ⊨Γ,Δ = {c}⊨τ[c] c
soundness           Bot                             γ γ⊨Γ,Δ = ⊨-min τ⊥
soundness           (Var j)                         γ γ⊨Γ,Δ = Pw.lookup γ⊨Γ,Δ (raise!> j)
soundness {e = μ e} (Fix ctx⊢e∶τ)                   γ γ⊨Γ,Δ =
  ⊨-fix
    (λ X⊆Y → ⟦⟧-mono-env e (X⊆Y ∷ Pw.refl ⊆-refl))
    (λ {A} A⊨τ → soundness ctx⊢e∶τ (A ∷ γ) (A⊨τ ∷ γ⊨Γ,Δ))
soundness           (Cat ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁⊛τ₂) γ γ⊨Γ,Δ =
  ⊛⇒∙-pres-⊨ τ₁⊛τ₂ (soundness ctx⊢e₁∶τ₁ γ γ⊨Γ,Δ) (soundness ctx⊢e₂∶τ₂ γ γ⊨Γ,Δ)
soundness           (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ τ₁#τ₂) γ γ⊨Γ,Δ =
  #⇒∨-pres-⊨ τ₁#τ₂ (soundness ctx⊢e₁∶τ₁ γ γ⊨Γ,Δ) (soundness ctx⊢e₂∶τ₂ γ γ⊨Γ,Δ)

subst₂-pres-rank :
  ∀ {e} → ctx ⊢ e ∶ τ →
  ∀ i {e′} → shiftᶜ (remove₂ ctx i) zero ⊢ e′ ∶ lookup (Γ,Δ ctx) (inject!< i) →
  rank (e [ e′ / inject!< i ]) ≡ rank e
subst₂-pres-rank Eps      i ctx⊢e′∶τ′ = refl
subst₂-pres-rank (Char c) i ctx⊢e′∶τ′ = refl
subst₂-pres-rank Bot      i ctx⊢e′∶τ′ = refl
subst₂-pres-rank {ctx = _ ⊐ g} (Var j)  i ctx⊢e′∶τ′ with inject!< i ≟ raise!> j
... | yes i≡j = ⊥-elim (flip <⇒≢ (cong toℕ i≡j) (begin-strict
  toℕ (inject!< i) ≡⟨ toℕ-inject!< i ⟩
  toℕ< i           <⟨ toℕ<<i i ⟩
  toℕ g            ≤⟨ toℕ>≥i j ⟩
  toℕ> j           ≡˘⟨ toℕ-raise!> j ⟩
  toℕ (raise!> j)  ∎))
  where open ≤-Reasoning
... | no i≢j  = refl
subst₂-pres-rank {ctx = ctx @ (Γ,Δ ⊐ suc g)} {τ} (Fix ctx⊢e∶τ) i {e′} ctx⊢e′∶τ′ =
  cong suc
    (subst₂-pres-rank ctx⊢e∶τ (suc i)
      (subst
        (_⊢ wkn e′ zero ∶ lookup Γ,Δ (inject!< i))
        (begin
          wkn₁ᶜ (shiftᶜ (remove₂ ctx i) zero) zero τ       ≡˘⟨ shift-wkn₁-wkn₂-comm (remove₂ ctx i) zero zero τ ⟩
          shiftᶜ (wkn₂ᶜ (remove₂ ctx i) zero τ) zero       ≡˘⟨ shift-cong-≡ zero zero (remove₂-wkn₂-comm ctx i zero τ) ⟩
          shiftᶜ (remove₂ (wkn₂ᶜ ctx zero τ) (suc i)) zero ∎)
        (wkn₁ ctx⊢e′∶τ′ zero τ)))
  where open ≡-Reasoning
subst₂-pres-rank (Cat ctx⊢e₁∶τ₁ _ _) i ctx⊢e′∶τ′ = cong suc (subst₂-pres-rank ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′)
subst₂-pres-rank (Vee ctx⊢e₁∶τ₁ ctx⊢e₂∶τ₂ _) i ctx⊢e′∶τ′ =
  cong₂
    (ℕ.suc ∘₂ _+_)
    (subst₂-pres-rank ctx⊢e₁∶τ₁ i ctx⊢e′∶τ′)
    (subst₂-pres-rank ctx⊢e₂∶τ₂ i ctx⊢e′∶τ′)