1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
module Encoded.Container
import Encoded.Arith
import Encoded.Bool
import Encoded.Fin
import Encoded.Pair
import Encoded.Sum
import Encoded.Vect
import Term.Syntax
%ambiguity_depth 4
%prefix_record_projections off
public export
Case : Type
Case = (Maybe Ty, Nat)
public export
record Container where
constructor Cases
constructors : SnocList Case
{auto 0 ok : NonEmpty constructors}
%name Container c
public export
semCase : Case -> Ty -> Ty
semCase (Just tag, k) ty = tag * Vect k ty
semCase (Nothing, k) ty = Vect k ty
public export
sem : Container -> Ty -> Ty
sem c ty = Sum (map (flip semCase ty) c.constructors) @{mapNonEmpty c.ok}
unitCase : Case -> Ty
unitCase (Just tag, k) = tag
unitCase (Nothing, k) = N
unitSem : Container -> Ty
unitSem c = Sum (map unitCase c.constructors) @{mapNonEmpty c.ok}
dmapCase :
{c : Case} ->
{ty, ty' : Ty} ->
Term ((Fin (snd c) ~> ty ~> ty') ~> semCase c ty ~> semCase c ty') ctx
dmapCase {c = (Just tag, k)} = Abs' (\f => App (mapSnd . dmap) [<f])
dmapCase {c = (Nothing, k)} = dmap
forgetCase : {c : Case} -> {ty : Ty} -> Term (semCase c ty ~> unitCase c) ctx
forgetCase {c = (Just tag, k)} = fst
forgetCase {c = (Nothing, k)} = Arb
recurse : {c : Case} -> {ty : Ty} -> Term (semCase c ty ~> Vect (snd c) ty) ctx
recurse {c = (Just tag, k)} = snd
recurse {c = (Nothing, k)} = Id
export
W : Container -> Ty
W c = N * (N ~> N * N) * (N ~> unitSem c)
-- ^ ^ ^- data
-- | + index mapping function: each index has a different base and stride
-- +- pred(fuel) for induction
fuel : {c : Container} -> Term (W c ~> N) ctx
fuel = fst . fst
offset : {c : Container} -> Term (W c ~> N ~> N * N) ctx
offset = snd . fst
vals : {c : Container} -> Term (W c ~> N ~> unitSem c) ctx
vals = snd
-- Adds a value to the start of a stream
cons : {ty : Ty} -> Term (ty ~> (N ~> ty) ~> (N ~> ty)) ctx
cons = Abs $ Abs $ Abs $
let x = Var (There $ There Here) in
let xs = Var (There Here) in
let n = Var Here in
App rec [<n, x, xs . fst]
-- Calculates total fuel for a new W value.
getFuel :
{cont : Container} ->
{c : Case} ->
Term (semCase c (W cont) ~> N) ctx
getFuel {c = (tag, k)} = App foldr [<Zero, plus] . App map [<Abs' Suc . fuel] . recurse
-- Updates the base and stride for a single recursive position.
-- These are multiplexed later.
stepOffset : {k : Nat} -> Term (Fin k ~> (N ~> N * N) ~> (N ~> N * N)) ctx
stepOffset = Abs $ Abs $ Abs $
let i = Var (There $ There Here) in
let f = Var (There Here) in
let x = Var Here in
App bimap
-- Suc is for the initial tag
[<App (plus . forget . suc) [<i] . App mult [<Lit k]
, App mult [<Lit k]
, App f [<x]
]
-- Calculates all offsets for a new W value.
getOffset :
{cont : Container} ->
{c : Case} ->
Term (semCase c (W cont) ~> N ~> N * N) ctx
getOffset {c = (tag, 0)} = Const $ Const $ App pair [<Lit 1, Zero]
getOffset {c = (tag, k@(S _))} = Abs' (\x =>
App cons
[<App pair [<Lit 1, Zero]
, Abs' (\n =>
let dm = App (divmod' k) [<n] in
let div = App fst [<dm] in
let mod = App snd [<dm] in
App stepOffset [<mod, App offset [<App (index . recurse) [<shift x, mod]], div])
])
-- Calculates data map for a new W value.
getVals :
{cont : Container} ->
{c : Case} ->
(i : Elem c cont.constructors) ->
Term (semCase c (W cont) ~> N ~> unitSem cont) ctx
getVals i {c = (tag', 0)} =
Abs' (\x => Const $ App (tag @{mapNonEmpty cont.ok} (elemMap unitCase i) . forgetCase) [<x])
getVals i {c = (tag', k@(S _))} = Abs' (\x =>
App Container.cons
[<App (tag @{mapNonEmpty cont.ok} (elemMap unitCase i) . forgetCase) [<x]
, Abs' (\n =>
let dm = App (divmod' k) [<n] in
let div = App fst [<dm] in
let mod = App snd [<dm] in
App vals [<App (index . recurse) [<shift x, mod], div])
])
-- Constructs a value for a specific constructor
introCase :
{cont : Container} ->
{c : Case} ->
(i : Elem c cont.constructors) ->
Term (semCase c (W cont) ~> W cont) ctx
introCase i = Abs' (\x =>
App pair [<App pair [<App getFuel [<x], App getOffset [<x]], App (getVals i) [<x]])
gtabulate : {sx : SnocList a} -> ({x : a} -> Elem x sx -> p (f x)) -> All p (map f sx)
gtabulate {sx = [<]} g = [<]
gtabulate {sx = sx :< x} g = gtabulate (g . There) :< g Here
export
intro : {c : Container} -> Term (sem c (W c) ~> W c) ctx
intro =
App (any @{mapNonEmpty c.ok}) {sty = map (~> W c) $ map (flip semCase (W c)) c.constructors} $
rewrite mapFusion (~> W c) (flip semCase (W c)) c.constructors in
gtabulate introCase
calcIndex : Term (N * N ~> N ~> N) ctx
calcIndex = Abs' (\bs => App (plus . fst) [<bs] . App (mult . snd) [<bs])
fillCase :
{c : Case} ->
{ty : Ty} ->
Term ((Fin (snd c) ~> ty) ~> (semCase c ty ~> ty) ~> unitCase c ~> ty) ctx
fillCase {c = (Just tag, k)} = Abs $ Abs $ Abs $
let f = Var (There $ There Here) in
let sem = Var (There Here) in
let val = Var Here in
App sem [<App pair [<val, App tabulate [<f]]]
fillCase {c = (Nothing, k)} =
Abs $ Abs $ Const $
let f = Var (There Here) in
let sem = Var Here in
App (sem . tabulate) [<f]
elimStep :
{c : Container} ->
{ty : Ty} ->
Term
(map (\c => semCase c ty ~> ty) c.constructors ~>*
(N ~> N * N) ~>
(N ~> unitSem c) ~>
(N ~> ty) ~>
(N ~> ty))
ctx
elimStep = AbsAll (_ :< _ :< _ :< _ :< _)
(\(fs :< offsets :< vals :< rec :< n) =>
let val = App vals [<n] in
let offset = App offsets [<n] in
App (any @{mapNonEmpty c.ok}) {sty = map (~> ty) (map unitCase c.constructors) :< unitSem c} $
rewrite mapFusion (~> ty) unitCase c.constructors in
gtabulate (\i =>
Syntax.App fillCase
[<rec . App calcIndex [<offset] . forget
, indexAll (elemMap (\c => semCase c ty ~> ty) i) fs
]) :<
val)
export
elim :
{c : Container} ->
{ty : Ty} ->
Term (map (\c => semCase c ty ~> ty) c.constructors ~>* W c ~> ty) ctx
elim = AbsAll (_ :< _)
(\(fs :< x) =>
App
(Rec (App fuel [<x])
Arb
(App elimStep (fs :< App offset [<x] :< App vals [<x])))
[<Zero])
|