1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
|
module Encoded.Sum
import public Data.List
import public Data.List.Elem
import public Data.List.Quantifiers
import Control.Function.FunExt
import Encoded.Bool
import Encoded.Pair
import Encoded.Union
import Syntax.PreorderReasoning
import Term.Semantics
import Term.Syntax
%ambiguity_depth 4
-- Auxilliary Functions --------------------------------------------------------
public export
mapNonEmpty : NonEmpty xs -> NonEmpty (map f xs)
mapNonEmpty IsNonEmpty = IsNonEmpty
-- Types -----------------------------------------------------------------------
export
(+) : Ty -> Ty -> Ty
ty1 + ty2 = B * (ty1 <+> ty2)
export
Sum : (tys : List Ty) -> {auto 0 ok : NonEmpty tys} -> Ty
Sum = foldr1 (+)
-- Universal Properties --------------------------------------------------------
-- Binary
export
left : {ty1, ty2 : Ty} -> Term (ty1 ~> (ty1 + ty2)) ctx
left = Abs' (\t => App pair [<True, App inL [<t]])
export
right : {ty1, ty2 : Ty} -> Term (ty2 ~> (ty1 + ty2)) ctx
right = Abs' (\t => App pair [<False, App inR [<t]])
export
case' : {ty1, ty2, ty : Ty} -> Term ((ty1 + ty2) ~> (ty1 ~> ty) ~> (ty2 ~> ty) ~> ty) ctx
case' = Abs' (\t =>
App if'
[<App fst [<t]
, Abs $ Const $ App (Var Here . prL . snd) [<shift t]
, Const $ Abs $ App (Var Here . prR . snd) [<shift t]
])
-- Utilty
export
either : {ty1, ty2, ty : Ty} -> Term ((ty1 ~> ty) ~> (ty2 ~> ty) ~> (ty1 + ty2) ~> ty) ctx
either = Abs $ Abs $ Abs $
let f = Var $ There $ There Here in
let g = Var $ There Here in
let x = Var Here in
App case' [<x, f, g]
-- N-ary
export
any :
{tys : List Ty} ->
{ty : Ty} ->
{auto 0 ok : NonEmpty tys} ->
All (\ty' => Term (ty' ~> ty) ctx) tys ->
Term (Sum tys ~> ty) ctx
any [f] = f
any (f :: fs@(_ :: _)) = App either [<f, any fs]
export
tag :
{tys : List Ty} ->
{ty : Ty} ->
{auto 0 ok : NonEmpty tys} ->
Elem ty tys ->
Term (ty ~> Sum tys) ctx
tag {tys = [_]} Here = Id
tag {tys = _ :: _ :: _} Here = left
tag {tys = _ :: _ :: _} (There i) = right . tag i
-- Semantics -------------------------------------------------------------------
-- Conversion to Idris
export
toEither :
{ty1, ty2 : Ty} ->
TypeOf (ty1 + ty2) ->
Either (TypeOf ty1) (TypeOf ty2)
toEither x =
if' (Sem.fst x)
(Left (prL $ Sem.snd x))
(Right (prR $ Sem.snd x))
export
fromEither :
{ty1, ty2 : Ty} ->
Either (TypeOf ty1) (TypeOf ty2) ->
TypeOf (ty1 + ty2)
fromEither (Left x) = pair Sem.True (inL x)
fromEither (Right x) = pair Sem.False (inR x)
export
toFromId :
FunExt =>
{ty1, ty2 : Ty} ->
(x : Either (TypeOf ty1) (TypeOf ty2)) ->
toEither {ty1, ty2} (fromEither {ty1, ty2} x) = x
toFromId (Left x) =
rewrite retractL {ty1 = B, ty2 = ty1 <+> ty2} Sem.True in
cong Left $ Calc $
|~ (Sem.prL {ty1, ty2} . Sem.prR . Sem.inR . Sem.inL) x
~~ (prL {ty1, ty2} . inL) x ...(cong prL $ retractR (inL x))
~~ x ...(retractL {ty1, ty2} x)
toFromId (Right x) =
rewrite retractL {ty1 = B, ty2 = ty1 <+> ty2} Sem.False in
cong Right $ Calc $
|~ (Sem.prR {ty1, ty2} . Sem.prR . Sem.inR . Sem.inR) x
~~ (prR {ty1, ty2} . inR) x ...(cong prR $ retractR (inR x))
~~ x ...(retractR {ty1, ty2} x)
-- Redefinition in Idris
namespace Sem
public export
left : {ty1, ty2 : Ty} -> TypeOf ty1 -> TypeOf (ty1 + ty2)
left x = pair Sem.True (inL x)
public export
right : {ty1, ty2 : Ty} -> TypeOf ty2 -> TypeOf (ty1 + ty2)
right x = pair Sem.False (inR x)
public export
case' :
{ty1, ty2 : Ty} ->
TypeOf (ty1 + ty2) ->
(TypeOf ty1 -> a) ->
(TypeOf ty2 -> a) ->
a
case' x =
if' (Sem.fst x)
(\f, _ => f $ prL $ Sem.snd x)
(\_, g => g $ prR $ Sem.snd x)
-- Homomorphism
export
leftHomo :
FunExt =>
{ty1, ty2 : Ty} ->
(0 x : TypeOf ty1) ->
toEither {ty1, ty2} (left {ty1, ty2} x) = Left x
leftHomo x = irrelevantEq $ toFromId (Left x)
export
rightHomo :
FunExt =>
{ty1, ty2 : Ty} ->
(0 x : TypeOf ty2) ->
toEither {ty1, ty2} (right {ty1, ty2} x) = Right x
rightHomo x = irrelevantEq $ toFromId (Right x)
export
caseHomo :
FunExt =>
{ty1, ty2 : Ty} ->
(x : Either (TypeOf ty1) (TypeOf ty2)) ->
(f : TypeOf ty1 -> a) ->
(g : TypeOf ty2 -> a) ->
case' {ty1, ty2} (fromEither {ty1, ty2} x) f g = either f g x
caseHomo (Left x) f g =
rewrite retractL {ty1 = B, ty2 = ty1 <+> ty2} Sem.True in
cong f $ Calc $
|~ (Sem.prL {ty1, ty2} . Sem.prR . Sem.inR . Sem.inL) x
~~ (prL {ty1, ty2} . inL) x ...(cong prL $ retractR (inL x))
~~ x ...(retractL {ty1, ty2} x)
caseHomo (Right x) f g =
rewrite retractL {ty1 = B, ty2 = ty1 <+> ty2} Sem.False in
cong g $ Calc $
|~ (Sem.prR {ty1, ty2} . Sem.prR . Sem.inR . Sem.inR) x
~~ (prR {ty1, ty2} . inR) x ...(cong prR $ retractR (inR x))
~~ x ...(retractR {ty1, ty2} x)
|