1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
module Encoded.Term
import Data.Vect
import Encoded.Bool
import Encoded.Container
import Encoded.Pair
import Encoded.Sum
import Encoded.Vect
import Term.Syntax
%ambiguity_depth 6
%prefix_record_projections off
-- Utilities ----------------------
rec : Nat -> a -> (a -> a) -> a
rec 0 z s = z
rec (S k) z s = s (rec k z s)
AppVect :
forall ctx.
{ty, ty' : Ty} ->
Term (rec k ty' (ty ~>)) ctx ->
Vect k (Term ty ctx) ->
Term ty' ctx
AppVect f [] = f
AppVect f (t :: ts) = AppVect (App f t) ts
-- Definition ------------------------------------------------------------------
TermC : Container
TermC = Cases
[<(Just N, 0) -- Var
, (Nothing, 0) -- Zero
, (Nothing, 1) -- Suc
, (Nothing, 3) -- Rec
, (Nothing, 1) -- Abs
, (Nothing, 2) -- App
]
export
Term : Ty
Term = W TermC
-- Smart Constructors ----------------------------------------------------------
export
Var : Term (N ~> Term) ctx
Var =
let i = There $ There $ There $ There $ There Here in
Abs' (\n => App (intro {c = TermC} . tag i) [<App pair [<n, nil]])
export
Zero : Term Term ctx
Zero =
let i = There $ There $ There $ There Here in
App (intro {c = TermC} . tag i) [<nil]
export
Suc : Term (Term ~> Term) ctx
Suc =
let i = There $ There $ There Here in
Abs' (\t => App (intro {c = TermC} . tag i) [<fromVect [t]])
export
Rec : Term (Term ~> Term ~> Term ~> Term) ctx
Rec =
let i = There $ There Here in
AbsAll [<_,_,_] (\[<t, u, v] => App (intro {c = TermC} . tag i) [<fromVect [t, u, v]])
export
Abs : Term (Term ~> Term) ctx
Abs =
let i = There Here in
Abs' (\t => App (intro {c = TermC} . tag i) [<fromVect [t]])
export
App : Term (Term ~> Term ~> Term) ctx
App =
let i = Here in
AbsAll [<_,_] (\[<t, u] => App (intro {c = TermC} . tag i) [<fromVect [t, u]])
-- Initiality ------------------------------------------------------------------
public export
EliminatorTy : Ty -> Ty
EliminatorTy ty =
(N ~> ty) *
(ty) *
(ty ~> ty) *
(ty ~> ty ~> ty ~> ty) *
(ty ~> ty) *
(ty ~> ty ~> ty)
public export
record Eliminator (ty : Ty) (ctx : SnocList Ty) where
constructor MkElim
var : Term (N ~> ty) ctx
zero : Term ty ctx
suc : Term (ty ~> ty) ctx
rec : Term (ty ~> ty ~> ty ~> ty) ctx
abs : Term (ty ~> ty) ctx
app : Term (ty ~> ty ~> ty) ctx
%name Eliminator elim
export
unpack : {ty : Ty} -> Term (EliminatorTy ty) ctx -> Eliminator ty ctx
unpack t =
MkElim
{ var = App (fst . fst . fst . fst . fst) [<t]
, zero = App (snd . fst . fst . fst . fst) [<t]
, suc = App (snd . fst . fst . fst) [<t]
, rec = App (snd . fst . fst) [<t]
, abs = App (snd . fst) [<t]
, app = App snd [<t]
}
export
pack : {ty : Ty} -> Eliminator ty ctx -> Term (EliminatorTy ty) ctx
pack elim =
App pair
[<App pair
[<App pair
[<App pair
[<App pair
[<elim.var
, elim.zero]
, elim.suc]
, elim.rec]
, elim.abs]
, elim.app]
export
Elim : {ty : Ty} -> Term (EliminatorTy ty ~> Term ~> ty) ctx
Elim = Abs' (\e =>
let el = unpack e in
App (elim {c = TermC})
[<el.var . fst
, Const el.zero
, Abs' (\v => AppVect (shift el.suc) (toVect v))
, Abs' (\v => AppVect (shift el.rec) (toVect v))
, Abs' (\v => AppVect (shift el.abs) (toVect v))
, Abs' (\v => AppVect (shift el.app) (toVect v))
])
where
public export
DiscriminatorTy : Ty -> Ty
DiscriminatorTy ty =
(N ~> ty) *
(ty) *
(Term ~> ty) *
(Term ~> Term ~> Term ~> ty) *
(Term ~> ty) *
(Term ~> Term ~> ty)
public export
record Discriminator (ty : Ty) (ctx : SnocList Ty) where
constructor MkDiscrim
var : Term (N ~> ty) ctx
zero : Term ty ctx
suc : Term (Term ~> ty) ctx
rec : Term (Term ~> Term ~> Term ~> ty) ctx
abs : Term (Term ~> ty) ctx
app : Term (Term ~> Term ~> ty) ctx
%name Eliminator elim
export
unpackDisc : {ty : Ty} -> Term (DiscriminatorTy ty) ctx -> Discriminator ty ctx
unpackDisc t =
MkDiscrim
{ var = App (fst . fst . fst . fst . fst) [<t]
, zero = App (snd . fst . fst . fst . fst) [<t]
, suc = App (snd . fst . fst . fst) [<t]
, rec = App (snd . fst . fst) [<t]
, abs = App (snd . fst) [<t]
, app = App snd [<t]
}
export
packDisc : {ty : Ty} -> Discriminator ty ctx -> Term (DiscriminatorTy ty) ctx
packDisc elim =
App pair
[<App pair
[<App pair
[<App pair
[<App pair
[<elim.var
, elim.zero]
, elim.suc]
, elim.rec]
, elim.abs]
, elim.app]
export
Inspect : {ty : Ty} -> Term (DiscriminatorTy ty ~> Term ~> ty) ctx
Inspect = Abs' (\e =>
let el = unpackDisc e in
App (inspect {c = TermC})
[<el.var . fst
, Const el.zero
, Abs' (\v => AppVect (shift el.suc) (toVect v))
, Abs' (\v => AppVect (shift el.rec) (toVect v))
, Abs' (\v => AppVect (shift el.abs) (toVect v))
, Abs' (\v => AppVect (shift el.app) (toVect v))
])
-- Weakening -------------------------------------------------------------------
liftNat : Term ((N ~> N) ~> (N ~> N)) ctx
liftNat = AbsAll [<_,_] (\[<f, n] => App if' [<App isZero [<n], 0, Suc (App f [<n])])
WeakenElim : Eliminator ((N ~> N) ~> Term) ctx
WeakenElim =
MkElim
{ var = AbsAll [<_,_] (\[<i, f] => App (Var . f) [<i])
, zero = Const Zero
, suc = Abs' (\t => Suc . t)
, rec = AbsAll [<_,_,_,_] (\[<t, u, v, f] => App Rec [<App t [<f], App u [<f], App v [<f]])
, abs = Abs' (\t => Abs . t . liftNat)
, app = AbsAll [<_,_,_] (\[<t, u, f] => App App [<App t [<f], App u [<f]])
}
export
weaken : Term ((N ~> N) ~> Term ~> Term) ctx
weaken = AbsAll [<_,_] (\[<f, t] => App Elim [<pack WeakenElim, t, f])
liftTerm : Term ((N ~> Term) ~> (N ~> Term)) ctx
liftTerm = AbsAll [<_,_] (\[<f, n] =>
App if'
[<App isZero [<n]
, App Var [<0]
, App weaken [<Op Suc, App f [<n]]])
-- Substitution ----------------------------------------------------------------
SubstElim : Eliminator ((N ~> Term) ~> Term) ctx
SubstElim =
MkElim
{ var = AbsAll [<_,_] (\[<i, f] => App f [<i])
, zero = Const Zero
, suc = Abs' (\t => Suc . t)
, rec = AbsAll [<_,_,_,_] (\[<t, u, v, f] => App Rec [<App t [<f], App u [<f], App v [<f]])
, abs = Abs' (\t => Abs . t . liftTerm)
, app = AbsAll [<_,_,_] (\[<t, u, f] => App App [<App t [<f], App u [<f]])
}
export
subst : Term ((N ~> Term) ~> Term ~> Term) ctx
subst = AbsAll [<_,_] (\[<f, t] => App Elim [<pack SubstElim, t, f])
-- Reduction -------------------------------------------------------------------
-- Performs an application step.
-- Arguments are whether inspected term stepped, and argument term
AppDisc : Discriminator (Term ~> B ~> Term * B) ctx
AppDisc =
MkDiscrim
{ var = fallthrough . Var
, zero = App fallthrough [<Zero]
, suc = fallthrough . Suc
, rec = AbsAll [<_,_,_] (\[<t, u, v] => App fallthrough [<App Rec [<t, u, v]])
, abs = AbsAll [<_,_,_] (\[<t, u, b] =>
App pair
[<App subst
[<Abs' (\n => App if' [<App isZero [<n], shift t, App Var [<pred n]])
, u
]
, True
])
, app = AbsAll [<_,_] (\[<t, u] => App fallthrough [<App App [<t, u]])
}
where
fallthrough : forall ctx. Term (Term ~> Term ~> B ~> Term * B) ctx
fallthrough =
AbsAll [<_,_,_] (\[<t, u, b] =>
App pair
[<App App [<t, u]
, b
])
RecDisc : Discriminator (Term ~> Term ~> B ~> Term * B) ctx
RecDisc =
MkDiscrim
{ var = fallthrough . Var
, zero = AbsAll [<_,_,_] (\[<u, v, b] =>
App pair [<u, True])
, suc = AbsAll [<_,_,_,_] (\[<t, u, v, b] =>
App pair
[<App App [<v, App Rec [<t, u, v]]
, True
])
, rec = AbsAll [<_,_,_] (\[<t, u, v] => App fallthrough [<App Rec [<t, u, v]])
, abs = fallthrough . Abs
, app = AbsAll [<_,_] (\[<t, u] => App fallthrough [<App App [<t, u]])
}
where
fallthrough : forall ctx. Term (Term ~> Term ~> Term ~> B ~> Term * B) ctx
fallthrough =
AbsAll [<_,_,_,_] (\[<t, u, v, b] =>
App pair
[<App Rec [<t, u, v]
, b
])
StepElim : Eliminator (Term * B) ctx
StepElim =
MkElim
{ var = Abs' (\i => App pair [<App Var [<i], False])
, zero = App pair [<Term.Zero, False]
, suc = App mapFst [<Suc]
, rec = AbsAll [<_,_,_] (\[<t, u, v] =>
App Inspect
[<packDisc RecDisc
, App fst [<t]
, App fst [<u]
, App fst [<v]
, App or [<App snd t, App or [<App snd u, App snd v]]
])
, abs = App mapFst [<Abs]
, app = AbsAll [<_,_] (\[<t, u] =>
App Inspect
[<packDisc AppDisc
, App fst [<t]
, App fst [<u]
, App or [<App snd [<t], App snd [<u]]
])
}
export
reduce : Term (N ~> Term ~> Term) ctx
reduce = Abs' (\n =>
Rec n
Id
(Abs' (\rec =>
(Abs' {ty = Term * B} (\ub =>
App if' [<App snd [<ub], App (shift rec) [<App fst [<ub]], App fst [<ub]])) .
(App Elim [<pack StepElim]))))
|