1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
module Total.Encoded.Util
import public Data.Fin
import public Data.List1
import public Data.List.Elem
import public Data.List.Quantifiers
import public Total.Syntax
%prefix_record_projections off
namespace Bool
export
B : Ty
B = N
export
true : FullTerm B [<]
true = zero
export
false : FullTerm B [<]
false = suc zero
export
if' : FullTerm (B ~> ty ~> ty ~> ty) [<]
if' = abs' (S $ S $ S Z) (\b, t, f => rec b t (abs $ drop f))
namespace Arb
export
arb : {ty : Ty} -> FullTerm ty [<]
arb {ty = N} = zero
arb {ty = ty ~> ty'} = abs (lift arb)
namespace Union
export
(<+>) : Ty -> Ty -> Ty
N <+> N = N
N <+> (u ~> u') = u ~> u'
(t ~> t') <+> N = t ~> t'
(t ~> t') <+> (u ~> u') = (t <+> u) ~> (t' <+> u')
export
swap : {t, u : Ty} -> FullTerm ((t <+> u) ~> (u <+> t)) [<]
swap {t = N, u = N} = id
swap {t = N, u = u ~> u'} = id
swap {t = t ~> t', u = N} = id
swap {t = t ~> t', u = u ~> u'} = abs' (S Z) (\f => drop swap . f . drop swap)
export
injL : {t, u : Ty} -> FullTerm (t ~> (t <+> u)) [<]
export
injR : {t, u : Ty} -> FullTerm (u ~> (t <+> u)) [<]
export
prjL : {t, u : Ty} -> FullTerm ((t <+> u) ~> t) [<]
export
prjR : {t, u : Ty} -> FullTerm ((t <+> u) ~> u) [<]
injL {t = N, u = N} = id
injL {t = N, u = u ~> u'} = abs' (S $ S Z) (\n, _ => app (lift (prjR . injL)) n)
injL {t = t ~> t', u = N} = id
injL {t = t ~> t', u = u ~> u'} = abs' (S Z) (\f => drop injL . f . drop prjL)
injR = swap . injL
prjL {t = N, u = N} = id
prjL {t = N, u = u ~> u'} = abs' (S Z) (\f => app (drop (prjL . injR) . f) (drop arb))
prjL {t = t ~> t', u = N} = id
prjL {t = t ~> t', u = u ~> u'} = abs' (S Z) (\f => drop prjL . f . drop injL)
prjR = prjL . swap
namespace Unit
export
Unit : Ty
Unit = N
namespace Pair
export
(*) : Ty -> Ty -> Ty
t * u = B ~> (t <+> u)
export
pair : {t, u : Ty} -> FullTerm (t ~> u ~> (t * u)) [<]
pair = abs' (S $ S $ S Z)
(\fst, snd, b => app' (lift if') [<b, app (lift injL) fst, app (lift injR) snd])
export
fst : {t, u : Ty} -> FullTerm ((t * u) ~> t) [<]
fst = abs' (S Z) (\p => app (drop prjL . p) (drop true))
export
snd : {t, u : Ty} -> FullTerm ((t * u) ~> u) [<]
snd = abs' (S Z) (\p => app (drop prjR . p) (drop false))
export
mapSnd : {t, u, v : Ty} -> FullTerm ((u ~> v) ~> (t * u) ~> (t * v)) [<]
mapSnd = abs' (S $ S Z) (\f, p => app' (lift pair) [<app (lift fst) p , app (f . lift snd) p])
export
Product : SnocList Ty -> Ty
Product = foldl (*) Unit
export
pair' : {tys : SnocList Ty} -> FullTerm (tys ~>* Product tys) [<]
pair' {tys = [<]} = arb
pair' {tys = tys :< ty} = abs' (S $ S Z) (\p, t => app' (lift pair) [<p, t]) .* pair'
export
project : {tys : SnocList Ty} -> Elem ty tys -> FullTerm (Product tys ~> ty) [<]
project {tys = tys :< ty} Here = snd
project {tys = tys :< ty} (There i) = project i . fst
export
mapProd :
{ctx, tys, tys' : SnocList Ty} ->
{auto 0 prf : SnocList.length tys = SnocList.length tys'} ->
All (flip FullTerm ctx) (zipWith (~>) tys tys') ->
FullTerm (Product tys ~> Product tys') ctx
mapProd {tys = [<], tys' = [<]} [<] = lift id
mapProd {tys = tys :< ty, tys' = tys' :< ty', prf} (fs :< f) =
abs' (S Z)
(\p =>
app' (lift pair)
[<app (drop (mapProd fs {prf = injective prf}) . lift fst) p
, app (drop f . lift snd) p
])
replicate : Nat -> a -> SnocList a
replicate 0 x = [<]
replicate (S n) x = replicate n x :< x
replicateLen : (n : Nat) -> SnocList.length (replicate n x) = n
replicateLen 0 = Refl
replicateLen (S k) = cong S (replicateLen k)
export
Vect : Nat -> Ty -> Ty
Vect n ty = Product (replicate n ty)
zipReplicate :
{0 f : a -> b -> c} ->
{0 p : c -> Type} ->
{n : Nat} ->
p (f x y) ->
SnocList.Quantifiers.All.All p (zipWith f (replicate n x) (replicate n y))
zipReplicate {n = 0} z = [<]
zipReplicate {n = S k} z = zipReplicate z :< z
export
mapVect :
{n : Nat} ->
{ty, ty' : Ty} ->
FullTerm ((ty ~> ty') ~> Vect n ty ~> Vect n ty') [<]
mapVect =
abs' (S Z)
(\f => mapProd {prf = trans (replicateLen n) (sym $ replicateLen n)} $ zipReplicate f)
export
nil : {ty : Ty} -> FullTerm (Vect 0 ty) [<]
nil = arb
export
cons : {n : Nat} -> {ty : Ty} -> FullTerm (ty ~> Vect n ty ~> Vect (S n) ty) [<]
cons = abs' (S $ S Z) (\t, ts => app' (lift pair) [<ts, t])
export
head : {n : Nat} -> {ty : Ty} -> FullTerm (Vect (S n) ty ~> ty) [<]
head = snd
export
tail : {n : Nat} -> {ty : Ty} -> FullTerm (Vect (S n) ty ~> Vect n ty) [<]
tail = fst
export
index : {n : Nat} -> {ty : Ty} -> (i : Fin n) -> FullTerm (Vect n ty ~> ty) [<]
index FZ = head
index (FS i) = index i . tail
export
enumerate : (n : Nat) -> FullTerm (Vect n N) [<]
enumerate 0 = arb
enumerate (S k) = app' pair [<app' mapVect [<abs' (S Z) suc, enumerate k], zero]
namespace Sum
export
(+) : Ty -> Ty -> Ty
t + u = B * (t <+> u)
export
left : {t, u : Ty} -> FullTerm (t ~> (t + u)) [<]
left = abs' (S Z) (\e => app' (drop pair) [<drop true, app (drop injL) e])
export
right : {t, u : Ty} -> FullTerm (u ~> (t + u)) [<]
right = abs' (S Z) (\e => app' (drop pair) [<drop false, app (drop injR) e])
export
case' : {t, u, ty : Ty} -> FullTerm ((t + u) ~> (t ~> ty) ~> (u ~> ty) ~> ty) [<]
case' = abs' (S $ S $ S Z)
(\s, f, g =>
app' (lift if')
[<app (lift fst) s
, app (f . lift (prjL . snd)) s
, app (g . lift (prjR . snd)) s])
export
either : {t, u, ty : Ty} -> FullTerm ((t ~> ty) ~> (u ~> ty) ~> (t + u) ~> ty) [<]
either = abs' (S $ S $ S Z) (\f, g, s => app' (lift case') [<s, f, g])
Sum' : Ty -> List Ty -> Ty
Sum' ty [] = ty
Sum' ty (ty' :: tys) = ty + Sum' ty' tys
export
Sum : List1 Ty -> Ty
Sum (ty ::: tys) = Sum' ty tys
put' :
{ty, ty' : Ty} ->
{tys : List Ty} ->
(i : Elem ty (ty' :: tys)) ->
FullTerm (ty ~> Sum' ty' tys) [<]
put' {tys = []} Here = id
put' {tys = _ :: _} Here = left
put' {tys = _ :: _} (There i) = right . put' i
export
put : {tys : List1 Ty} -> {ty : Ty} -> (i : Elem ty (forget tys)) -> FullTerm (ty ~> Sum tys) [<]
put {tys = _ ::: _} i = put' i
any' :
{ctx : SnocList Ty} ->
{ty, ty' : Ty} ->
{tys : List Ty} ->
All (flip FullTerm ctx . (~> ty)) (ty' :: tys) ->
FullTerm (Sum' ty' tys ~> ty) ctx
any' (t :: []) = t
any' (t :: u :: ts) = app' (lift either) [<t, any' (u :: ts)]
export
any :
{ctx : SnocList Ty} ->
{tys : List1 Ty} ->
{ty : Ty} ->
All (flip FullTerm ctx . (~> ty)) (forget tys) ->
FullTerm (Sum tys ~> ty) ctx
any {tys = _ ::: _} = any'
namespace Nat
export
isZero : FullTerm (N ~> B) [<]
isZero = abs' (S Z) (\m => rec m (drop true) (abs (lift false)))
export
add : FullTerm (N ~> N ~> N) [<]
add = abs' (S $ S Z) (\m, n => rec m n (abs' (S Z) suc))
export
sum : {n : Nat} -> FullTerm (Vect n N ~> N) [<]
sum {n = 0} = abs zero
sum {n = S k} = abs' (S Z)
(\ns => app' (lift add) [<app (lift head) ns, app (lift (sum . tail)) ns])
export
pred : FullTerm (N ~> N) [<]
pred = abs' (S Z)
(\m =>
app' (lift case')
[<rec m
(lift $ app left (arb {ty = Unit}))
(app' (lift either)
[<abs (lift $ app right zero)
, abs' (S Z) (\n => app (lift right) (suc n))
])
, abs zero
, drop id
])
export
sub : FullTerm (N ~> N ~> N) [<]
sub = abs' (S $ S Z) (\m, n => rec n m (lift pred))
export
le : FullTerm (N ~> N ~> B) [<]
le = abs' (S Z) (\m => lift isZero . app (lift sub) m)
export
lt : FullTerm (N ~> N ~> B) [<]
lt = abs' (S Z) (\m => app (lift le) (suc m))
export
cond :
{ctx : SnocList Ty} ->
{ty : Ty} ->
List (FullTerm N ctx, FullTerm (N ~> ty) ctx) ->
FullTerm (N ~> ty) ctx
cond [] = lift arb
cond ((n, v) :: xs) =
abs' (S Z)
(\t =>
app' (lift if')
[<app' (lift le) [<t, drop n]
, app (drop v) t
, app (drop $ cond xs) (app' (lift sub) [<t, drop n])])
namespace Data
public export
Shape : Type
Shape = (Ty, Nat)
public export
Container : Type
Container = List1 Shape
public export
fillShape : Shape -> Ty -> Ty
fillShape (shape, n) ty = shape * Vect n ty
public export
fill : Container -> Ty -> Ty
fill c ty = Sum (map (flip fillShape ty) c)
export
fix : Container -> Ty
fix c = Product [<N, N ~> N, N ~> fill c N]
-- ^ ^ ^- tags and next positions
-- | |- offset
-- |- pred (number of tags in structure)
mapShape :
{shape : Shape} ->
{ty, ty' : Ty} ->
FullTerm ((ty ~> ty') ~> fillShape shape ty ~> fillShape shape ty') [<]
mapShape {shape = (shape, n)} = mapSnd . mapVect
gmap :
{0 f : a -> b} ->
{0 P : a -> Type} ->
{0 Q : b -> Type} ->
({x : a} -> P x -> Q (f x)) ->
{xs : List a} ->
All P xs ->
All Q (map f xs)
gmap f [] = []
gmap f (px :: pxs) = f px :: gmap f pxs
forgetMap :
(0 f : a -> b) ->
(0 xs : List1 a) ->
forget (map f xs) = map f (forget xs)
forgetMap f (head ::: tail) = Refl
calcOffsets :
{ctx : SnocList Ty} ->
{c : Container} ->
{n : Nat} ->
(ts : FullTerm (Vect n (fix c)) ctx) ->
(acc : FullTerm N ctx) ->
List (FullTerm N ctx, FullTerm (N ~> N) ctx)
calcOffsets {n = 0} ts acc = []
calcOffsets {n = S k} ts acc =
let hd = app (lift head) ts in
let n = app (lift $ project $ There $ There Here) hd in
let offset = app (lift $ project $ There Here) hd in
(n, app (lift add) acc . offset) ::
calcOffsets
(app (lift tail) ts)
(app' (lift add) [<suc n, acc])
calcData :
{ctx : SnocList Ty} ->
{c : Container} ->
{n : Nat} ->
(ts : FullTerm (Vect n (fix c)) ctx) ->
(acc : FullTerm N ctx) ->
List (FullTerm N ctx, FullTerm (N ~> fill c N) ctx)
calcData {n = 0} ts acc = []
calcData {n = S k} ts acc =
let hd = app (lift head) ts in
let n = app (lift $ project $ There $ There Here) hd in
(n, app (lift $ project Here) hd) ::
calcData
(app (lift tail) ts)
(app' (lift add) [<suc n, acc])
export
intro :
{c : Container} ->
{shape : Shape} ->
Elem shape (forget c) ->
FullTerm (fillShape shape (fix c) ~> fix c) [<]
intro {shape = (shape, n)} i = abs' (S Z)
(\t =>
app' (lift $ pair' {tys = [<N, N ~> N, N ~> fill c N]})
[<app (lift (sum . app mapVect (abs' (S Z) suc . project (There $ There Here)) . snd)) t
, cond ((zero, abs' (S Z) suc) :: calcOffsets (app (lift snd) t) (suc zero))
, cond
( (zero,
abs
(app
(lift $ put {tys = map (flip fillShape N) c} $
rewrite forgetMap (flip fillShape N) c in
elemMap (flip fillShape N) i)
(app' (lift mapSnd) [<abs (lift $ enumerate n), drop t])))
:: calcData (app (lift snd) t) (suc zero)
)
])
export
elim :
{c : Container} ->
{ctx : SnocList Ty} ->
{ty : Ty} ->
All (flip FullTerm ctx . (~> ty) . flip Data.fillShape ty) (forget c) ->
FullTerm (fix c ~> ty) ctx
elim cases = abs' (S Z)
(\t =>
let tags = suc (app (lift $ project $ There $ There Here) t) in
let offset = app (lift $ project $ There Here) (drop $ drop t) in
let vals = app (lift $ project $ Here) (drop $ drop t) in
app'
(rec tags
(lift arb)
(abs' (S $ S Z) (\rec, n =>
app
(any {tys = map (flip fillShape N) c}
(rewrite forgetMap (flip fillShape N) c in
gmap
(\f =>
drop (drop $ drop f) .
app (lift mapShape) (rec . app (lift add) (app offset n)))
cases) .
vals)
n)))
[<zero])
-- elim cases (#tags-1,offset,data) =
-- let
-- step : (N -> ty) -> (N -> ty)
-- step rec n =
-- case rec n of
-- i => cases(i) . mapShape (rec . (+ offset n))
-- in
-- rec #tags arb step 0
|